Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA.
Appl Environ Microbiol. 2014 Jan;80(1):294-305. doi: 10.1128/AEM.02860-13. Epub 2013 Oct 25.
High-temperature (>70°C) ecosystems in Yellowstone National Park (YNP) provide an unparalleled opportunity to study chemotrophic archaea and their role in microbial community structure and function under highly constrained geochemical conditions. Acidilobus spp. (order Desulfurococcales) comprise one of the dominant phylotypes in hypoxic geothermal sulfur sediment and Fe(III)-oxide environments along with members of the Thermoproteales and Sulfolobales. Consequently, the primary goals of the current study were to analyze and compare replicate de novo sequence assemblies of Acidilobus-like populations from four different mildly acidic (pH 3.3 to 6.1) high-temperature (72°C to 82°C) environments and to identify metabolic pathways and/or protein-encoding genes that provide a detailed foundation of the potential functional role of these populations in situ. De novo assemblies of the highly similar Acidilobus-like populations (>99% 16S rRNA gene identity) represent near-complete consensus genomes based on an inventory of single-copy genes, deduced metabolic potential, and assembly statistics generated across sites. Functional analysis of coding sequences and confirmation of gene transcription by Acidilobus-like populations provide evidence that they are primarily chemoorganoheterotrophs, generating acetyl coenzyme A (acetyl-CoA) via the degradation of carbohydrates, lipids, and proteins, and auxotrophic with respect to several external vitamins, cofactors, and metabolites. No obvious pathways or protein-encoding genes responsible for the dissimilatory reduction of sulfur were identified. The presence of a formate dehydrogenase (Fdh) and other protein-encoding genes involved in mixed-acid fermentation supports the hypothesis that Acidilobus spp. function as degraders of complex organic constituents in high-temperature, mildly acidic, hypoxic geothermal systems.
黄石国家公园(Yellowstone National Park,简称 YNP)的高温(>70°C)生态系统为研究嗜热古菌及其在高度受限的地球化学条件下对微生物群落结构和功能的作用提供了无与伦比的机会。嗜酸热硫化叶菌属(Acidilobus spp.,脱硫球菌目 Desulfurococcales)与耐热菌目 Thermoproteales 和硫杆菌目 Sulfolobales 的成员一起,构成了缺氧地热硫沉积物和 Fe(III)-氧化物环境中主要的优势类群之一。因此,本研究的主要目标是分析和比较来自四个不同微酸性(pH 值 3.3 至 6.1)高温(72°C 至 82°C)环境的嗜酸热硫化叶菌样种群的重复从头测序组装,并确定代谢途径和/或蛋白质编码基因,为这些种群在原位的潜在功能作用提供详细的基础。高度相似的嗜酸热硫化叶菌样种群(>99% 16S rRNA 基因同一性)的从头组装代表了近乎完整的共识基因组,这是基于单拷贝基因清单、推断的代谢潜力和在各个地点生成的组装统计数据。通过嗜酸热硫化叶菌样种群的编码序列功能分析和基因转录的确认,提供了它们主要是化能有机异养生物的证据,通过碳水化合物、脂质和蛋白质的降解产生乙酰辅酶 A(acetyl-CoA),并对几种外部维生素、辅因子和代谢物具有营养缺陷型。没有发现负责硫异化还原的明显途径或蛋白质编码基因。存在甲酸脱氢酶(Fdh)和其他参与混合酸发酵的蛋白质编码基因支持了嗜酸热硫化叶菌属(Acidilobus spp.)作为高温、微酸性、缺氧地热系统中复杂有机成分降解者的假说。