Suppr超能文献

酸性地热泉中氧化铁微生物席群落的组装与演替

Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs.

作者信息

Beam Jacob P, Bernstein Hans C, Jay Zackary J, Kozubal Mark A, Jennings Ryan deM, Tringe Susannah G, Inskeep William P

机构信息

Department of Land Resources and Environmental Sciences, Thermal Biology Institute, Montana State University Bozeman, MT, USA.

Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State UniversityBozeman, MT, USA; Biodetection Science and Biological Science Division, Pacific Northwest National LaboratoryRichland, WA, USA.

出版信息

Front Microbiol. 2016 Feb 15;7:25. doi: 10.3389/fmicb.2016.00025. eCollection 2016.

Abstract

Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day(-1), and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems.

摘要

生物矿化的氧化铁微生物垫在地球上普遍存在,在美国怀俄明州黄石国家公园(YNP)的温泉中很常见,并且是微生物与物理化学过程直接相互作用形成的。本研究的总体目标是确定不同群落成员对酸性高温Fe(III) - 氧化物垫生态系统的组装和演替的贡献。在黄石国家公园的两个酸性地热泉(pH = 3 - 3.5;温度 = 68 - 75°C)的流出通道中,使用无菌玻璃显微镜载玻片,在70天内监测了Fe(III) - 氧化物积累和相关群落成员丰度的时空变化。嗜氢杆菌属是在早期演替阶段(4 - 40天)鉴定出的最丰富的分类群,并且已被证明能氧化亚砷酸盐、硫化物和与氧还原偶联的氢气。在4天内检测到了黄石嗜热金属球菌的铁氧化种群,并在14 - 30天内达到稳态水平,这与可见的Fe(III) - 氧化物积累相对应。异养古菌在30天左右定殖,并在70天后以及在成熟的Fe(III) - 氧化物垫(1 - 2厘米厚)中成为优势功能类群。Fe(III) - 氧化物积累的一级速率常数范围为0.046至0.05天⁻¹,原位微电极测量表明Fe(II)的氧化受O₂扩散到Fe(III) -氧化物垫中的限制。微型梯田的形成也表明O₂是控制微生物生长和随后垫形态的主要变量。Fe(III) - 氧化物垫群落的组装和演替遵循自养岩石生物定殖以及随后各种有机异养生物生长的可重复模式。现存生物矿化的Fe(III) - 氧化物垫独特的地球化学特征和微观形态对于理解其他Fe(II)氧化系统也很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2866/4753309/b805b38c13e3/fmicb-07-00025-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验