Suppr超能文献

稳定的微米级孔洞是典型孔蛋白的一个普遍特征。

Stable micron-scale holes are a general feature of canonical holins.

作者信息

Savva Christos G, Dewey Jill S, Moussa Samir H, To Kam H, Holzenburg Andreas, Young Ry

机构信息

Department of Biology, Texas A&M University, College Station, Texas, 77843-3258, USA; Microscopy and Imaging Center, Texas A&M University, College Station, Texas, 77843-2257, USA.

出版信息

Mol Microbiol. 2014 Jan;91(1):57-65. doi: 10.1111/mmi.12439. Epub 2013 Nov 21.

Abstract

At a programmed time in phage infection cycles, canonical holins suddenly trigger to cause lethal damage to the cytoplasmic membrane, resulting in the cessation of respiration and the non-specific release of pre-folded, fully active endolysins to the periplasm. For the paradigm holin S105 of lambda, triggering is correlated with the formation of micron-scale membrane holes, visible as interruptions in the bilayer in cryo-electron microscopic images and tomographic reconstructions. Here we report that the size distribution of the holes is stable for long periods after triggering. Moreover, early triggering caused by an early lysis allele of S105 formed approximately the same number of holes, but the lesions were significantly smaller. In contrast, early triggering prematurely induced by energy poisons resulted in many fewer visible holes, consistent with previous sizing studies. Importantly, the unrelated canonical holins P2 Y and T4 T were found to cause the formation of holes of approximately the same size and number as for lambda. In contrast, no such lesions were visible after triggering of the pinholin S(21) 68. These results generalize the hole formation phenomenon for canonical holins. A model is presented suggesting the unprecedentedly large size of these holes is related to the timing mechanism.

摘要

在噬菌体感染周期的特定时间,典型的孔蛋白会突然触发,对细胞质膜造成致命损伤,导致呼吸停止,并使预先折叠好的、完全有活性的内溶素非特异性地释放到周质空间。对于λ噬菌体的典型孔蛋白S105,触发与微米级膜孔的形成相关,在冷冻电子显微镜图像和断层重建中,这些膜孔表现为双层膜中的中断。我们在此报告,触发后很长一段时间内,孔的大小分布是稳定的。此外,由S105的早期裂解等位基因引起的早期触发形成的孔数量大致相同,但损伤明显较小。相比之下,能量毒物过早诱导的早期触发导致可见孔的数量少得多,这与之前的大小测定研究一致。重要的是,发现不相关的典型孔蛋白P2 Y和T4 T形成的孔大小和数量与λ噬菌体的大致相同。相比之下,触发针孔蛋白S(21) 68后没有可见的此类损伤。这些结果推广了典型孔蛋白形成孔的现象。提出了一个模型,表明这些孔前所未有的大尺寸与时间机制有关。

相似文献

1
Stable micron-scale holes are a general feature of canonical holins.
Mol Microbiol. 2014 Jan;91(1):57-65. doi: 10.1111/mmi.12439. Epub 2013 Nov 21.
2
Micron-scale holes terminate the phage infection cycle.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2219-23. doi: 10.1073/pnas.0914030107. Epub 2010 Jan 11.
3
Probing the structure of the S105 hole.
J Bacteriol. 2014 Nov;196(21):3683-9. doi: 10.1128/JB.01673-14. Epub 2014 Aug 4.
4
The pinholin of lambdoid phage 21: control of lysis by membrane depolarization.
J Bacteriol. 2007 Dec;189(24):9135-9. doi: 10.1128/JB.00847-07. Epub 2007 Sep 7.
5
Functional analysis of a class I holin, P2 Y.
J Bacteriol. 2013 Mar;195(6):1346-55. doi: 10.1128/JB.01986-12. Epub 2013 Jan 18.
6
Visualization of pinholin lesions in vivo.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):E2054-63. doi: 10.1073/pnas.1222283110. Epub 2013 May 13.
7
Clocking out: modeling phage-induced lysis of Escherichia coli.
J Bacteriol. 2007 Jul;189(13):4749-55. doi: 10.1128/JB.00392-07. Epub 2007 Apr 27.
8
The holin of bacteriophage lambda forms rings with large diameter.
Mol Microbiol. 2008 Aug;69(4):784-793. doi: 10.1111/j.1365-2958.2008.06298.x.
9
Membrane fusion during phage lysis.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5497-502. doi: 10.1073/pnas.1420588112. Epub 2015 Apr 13.

引用本文的文献

2
Spatial and temporal control of lysis by the lambda holin.
mBio. 2024 Feb 14;15(2):e0129023. doi: 10.1128/mbio.01290-23. Epub 2023 Dec 21.
3
Acinetobacter Baumannii Phages: Past, Present and Future.
Viruses. 2023 Mar 3;15(3):673. doi: 10.3390/v15030673.
5
Topological examination of the bacteriophage lambda S holin by EPR spectroscopy.
Biochim Biophys Acta Biomembr. 2023 Feb;1865(2):184083. doi: 10.1016/j.bbamem.2022.184083. Epub 2022 Nov 9.
6
Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications.
Front Microbiol. 2022 Oct 26;13:1044143. doi: 10.3389/fmicb.2022.1044143. eCollection 2022.
7
Occurrence and potential mechanism of holin-mediated non-lytic protein translocation in bacteria.
Microb Cell. 2022 Sep 23;9(10):159-173. doi: 10.15698/mic2022.10.785. eCollection 2022 Oct 3.
8
Getting Outside the Cell: Versatile Holin Strategies Used by Distinct Phages to Leave Their Bacillus thuringiensis Host.
J Virol. 2022 Jul 27;96(14):e0069622. doi: 10.1128/jvi.00696-22. Epub 2022 Jun 27.
9
Characterization and Genomic Analysis of a Novel Jumbo Bacteriophage vB_StaM_SA1 Infecting With Two Lysins.
Front Microbiol. 2022 Apr 28;13:856473. doi: 10.3389/fmicb.2022.856473. eCollection 2022.
10
Functional Analysis of the Endopeptidase and Holin From Cyanophage PaV-LD.
Front Microbiol. 2022 Apr 28;13:849492. doi: 10.3389/fmicb.2022.849492. eCollection 2022.

本文引用的文献

1
Visualization of pinholin lesions in vivo.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):E2054-63. doi: 10.1073/pnas.1222283110. Epub 2013 May 13.
2
Functional analysis of a class I holin, P2 Y.
J Bacteriol. 2013 Mar;195(6):1346-55. doi: 10.1128/JB.01986-12. Epub 2013 Jan 18.
3
Protein determinants of phage T4 lysis inhibition.
Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2.
4
Metallothionein as a clonable high-density marker for cryo-electron microscopy.
J Struct Biol. 2012 Jan;177(1):119-27. doi: 10.1016/j.jsb.2011.10.007. Epub 2011 Oct 31.
5
A ferritin-based label for cellular electron cryotomography.
Structure. 2011 Feb 9;19(2):147-54. doi: 10.1016/j.str.2010.12.002.
6
Holin triggering in real time.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):798-803. doi: 10.1073/pnas.1011921108. Epub 2010 Dec 27.
7
Mapping the pinhole formation pathway of S21.
Mol Microbiol. 2010 Nov;78(3):710-9. doi: 10.1111/j.1365-2958.2010.07362.x. Epub 2010 Sep 14.
8
Mutational analysis of the S21 pinholin.
Mol Microbiol. 2010 Apr;76(1):68-77. doi: 10.1111/j.1365-2958.2010.07080.x. Epub 2010 Feb 23.
9
Micron-scale holes terminate the phage infection cycle.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2219-23. doi: 10.1073/pnas.0914030107. Epub 2010 Jan 11.
10
The N-terminal transmembrane domain of lambda S is required for holin but not antiholin function.
J Bacteriol. 2010 Feb;192(3):725-33. doi: 10.1128/JB.01263-09. Epub 2009 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验