Suppr超能文献

噬菌体裂解过程中的膜融合

Membrane fusion during phage lysis.

作者信息

Rajaure Manoj, Berry Joel, Kongari Rohit, Cahill Jesse, Young Ry

机构信息

Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128; and.

Department of Microbiology, Pasteur Institute, 75724 Paris, France.

出版信息

Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5497-502. doi: 10.1073/pnas.1420588112. Epub 2015 Apr 13.

Abstract

In general, phages cause lysis of the bacterial host to effect release of the progeny virions. Until recently, it was thought that degradation of the peptidoglycan (PG) was necessary and sufficient for osmotic bursting of the cell. Recently, we have shown that in Gram-negative hosts, phage lysis also requires the disruption of the outer membrane (OM). This is accomplished by spanins, which are phage-encoded proteins that connect the cytoplasmic membrane (inner membrane, IM) and the OM. The mechanism by which the spanins destroy the OM is unknown. Here we show that the spanins of the paradigm coliphage lambda mediate efficient membrane fusion. This supports the notion that the last step of lysis is the fusion of the IM and OM. Moreover, data are provided indicating that spanin-mediated fusion is regulated by the meshwork of the PG, thus coupling fusion to murein degradation by the phage endolysin. Because endolysin function requires the formation of μm-scale holes by the phage holin, the lysis pathway is seen to require dramatic dynamics on the part of the OM and IM, as well as destruction of the PG.

摘要

一般来说,噬菌体通过使细菌宿主裂解来实现子代病毒粒子的释放。直到最近,人们还认为肽聚糖(PG)的降解对于细胞的渗透裂解是必要且充分的。最近,我们发现,在革兰氏阴性宿主中,噬菌体裂解还需要破坏外膜(OM)。这是由spanin蛋白完成的,spanin是噬菌体编码的连接细胞质膜(内膜,IM)和外膜的蛋白质。spanin破坏外膜的机制尚不清楚。在这里,我们表明典型的大肠杆菌噬菌体λ的spanin介导了有效的膜融合。这支持了裂解的最后一步是内膜和外膜融合的观点。此外,我们提供的数据表明,spanin介导的融合受PG网络的调控,从而将融合与噬菌体溶菌酶对胞壁质的降解联系起来。由于溶菌酶的功能需要噬菌体孔蛋白形成微米级的孔,因此裂解途径似乎需要外膜和内膜发生剧烈的动态变化,以及肽聚糖的破坏。

相似文献

1
Membrane fusion during phage lysis.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5497-502. doi: 10.1073/pnas.1420588112. Epub 2015 Apr 13.
2
Localization and Regulation of the T1 Unimolecular Spanin.
J Virol. 2018 Oct 29;92(22). doi: 10.1128/JVI.00380-18. Print 2018 Nov 15.
3
Phage Lysis: Multiple Genes for Multiple Barriers.
Adv Virus Res. 2019;103:33-70. doi: 10.1016/bs.aivir.2018.09.003. Epub 2018 Nov 28.
4
Identifying components of the phage LambdaSo lysis system.
J Bacteriol. 2024 Jun 20;206(6):e0002224. doi: 10.1128/jb.00022-24. Epub 2024 May 21.
5
Phage lysis: three steps, three choices, one outcome.
J Microbiol. 2014 Mar;52(3):243-58. doi: 10.1007/s12275-014-4087-z. Epub 2014 Mar 1.
6
Endolysin Regulation in Phage Mu Lysis.
mBio. 2022 Jun 28;13(3):e0081322. doi: 10.1128/mbio.00813-22. Epub 2022 Apr 26.
7
The spanin complex is essential for lambda lysis.
J Bacteriol. 2012 Oct;194(20):5667-74. doi: 10.1128/JB.01245-12. Epub 2012 Aug 17.
8
Phage spanins: diversity, topological dynamics and gene convergence.
BMC Bioinformatics. 2018 Sep 15;19(1):326. doi: 10.1186/s12859-018-2342-8.
9
Suppressor Analysis of the Fusogenic Lambda Spanins.
J Virol. 2017 Jun 26;91(14). doi: 10.1128/JVI.00413-17. Print 2017 Jul 15.
10
Micron-scale holes terminate the phage infection cycle.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2219-23. doi: 10.1073/pnas.0914030107. Epub 2010 Jan 11.

引用本文的文献

1
2
Microscopic origin of the spatial and temporal precision in biological systems.
Biophys Rep (N Y). 2025 Mar 12;5(1):100197. doi: 10.1016/j.bpr.2025.100197. Epub 2025 Jan 28.
3
Genome characterization of a multi-drug resistant strain, L1PEag1, isolated from commercial cape gooseberry fruits ( L.).
Front Microbiol. 2024 Jul 22;15:1392333. doi: 10.3389/fmicb.2024.1392333. eCollection 2024.
4
Molecular mechanisms of precise timing in cell lysis.
Biophys J. 2024 Sep 17;123(18):3090-3099. doi: 10.1016/j.bpj.2024.07.008. Epub 2024 Jul 6.
5
Benefits and Challenges of Applying Bacteriophage Biocontrol in the Consumer Water Cycle.
Microorganisms. 2024 Jun 7;12(6):1163. doi: 10.3390/microorganisms12061163.
6
Identifying components of the phage LambdaSo lysis system.
J Bacteriol. 2024 Jun 20;206(6):e0002224. doi: 10.1128/jb.00022-24. Epub 2024 May 21.
7
Co-ordinated assembly of the multilayered cell envelope of Gram-negative bacteria.
Curr Opin Microbiol. 2024 Jun;79:102479. doi: 10.1016/j.mib.2024.102479. Epub 2024 May 7.
9
Harnessing a T1 Phage-Derived Spanin for Developing Phage-Based Antimicrobial Development.
Biodes Res. 2024 Mar 20;6:0028. doi: 10.34133/bdr.0028. eCollection 2024.

本文引用的文献

1
Phage lysis: three steps, three choices, one outcome.
J Microbiol. 2014 Mar;52(3):243-58. doi: 10.1007/s12275-014-4087-z. Epub 2014 Mar 1.
2
Spanin function requires subunit homodimerization through intermolecular disulfide bonds.
Mol Microbiol. 2013 Apr;88(1):35-47. doi: 10.1111/mmi.12167. Epub 2013 Feb 28.
3
Distinct single-cell morphological dynamics under beta-lactam antibiotics.
Mol Cell. 2012 Dec 14;48(5):705-12. doi: 10.1016/j.molcel.2012.09.016. Epub 2012 Oct 25.
4
The spanin complex is essential for lambda lysis.
J Bacteriol. 2012 Oct;194(20):5667-74. doi: 10.1128/JB.01245-12. Epub 2012 Aug 17.
6
Holin triggering in real time.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):798-803. doi: 10.1073/pnas.1011921108. Epub 2010 Dec 27.
8
Cell shape and cell-wall organization in Gram-negative bacteria.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19282-7. doi: 10.1073/pnas.0805309105. Epub 2008 Dec 2.
9
The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes.
Mol Microbiol. 2008 Oct;70(2):341-51. doi: 10.1111/j.1365-2958.2008.06408.x. Epub 2008 Aug 18.
10
Viral membrane fusion.
Nat Struct Mol Biol. 2008 Jul;15(7):690-8. doi: 10.1038/nsmb.1456.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验