AstraZeneca PLC, 35 Gatehouse Drive, Waltham, MA, 02451, USA,
Drug Saf. 2013 Oct;36 Suppl 1:S195-204. doi: 10.1007/s40264-013-0112-0.
A systematic risk identification system has the potential to study all marketed drugs. However, the rates of drug exposure and outcome occurrences in observational databases, the database size and the desired risk detection threshold determine the power and therefore limit the feasibility of the application of appropriate analytical methods. Drugs vary dramatically for these parameters because of their prevalence of indication, cost, time on the market, payer formularies, market pressures and clinical guidelines.
Evaluate (i) the feasibility of a risk identification system based on commercially available observational databases, (ii) the range of drugs that can be studied for certain outcomes, (iii) the influence of underpowered drug-outcome pairs on the performance of analytical methods estimating the strength of their association and (iv) the time required from the introduction of a new drug to accumulate sufficient data for signal detection.
As part of the Observational Medical Outcomes Partnership experiment, we used data from commercially available observational databases and calculated the minimal detectable relative risk of all pairs of marketed drugs and eight health outcomes of interest. We then studied an array of analytical methods for their ability to distinguish between pre-determined positive and negative drug-outcome test pairs. The positive controls contained active ingredients with evidence of a positive association with the outcome, and the negative controls had no such evidence. As a performance measure we used the area under the receiver operator characteristics curve (AUC). We compared the AUC of methods using all test pairs or only pairs sufficiently powered for detection of a relative risk of 1.25. Finally, we studied all drugs introduced to the market in 2003-2008 and determined the time required to achieve the same minimal detectable relative risk threshold.
The performance of methods improved after restricting them to fully powered drug-outcome pairs. The availability of drug-outcome pairs with sufficient power to detect a relative risk of 1.25 varies enormously among outcomes. Depending on the market uptake, drugs can generate relevant signals in the first month after approval, or never reach sufficient power.
The incidence of drugs and important outcomes determines sample size and method performance in estimating drug-outcome associations. Careful consideration is therefore necessary to choose databases and outcome definitions, particularly for newly introduced drugs.
系统风险识别系统有可能研究所有已上市的药物。然而,观察性数据库中的药物暴露率和结局发生率、数据库大小以及所需的风险检测阈值决定了应用适当分析方法的能力,从而限制了其可行性。由于药物的适应证流行程度、成本、上市时间、支付者处方集、市场压力和临床指南的不同,这些参数差异很大。
评估(i)基于商业上可获得的观察性数据库的风险识别系统的可行性,(ii)可用于某些结局的药物范围,(iii)药物-结局对检测能力不足对估计其关联强度的分析方法性能的影响,以及(iv)从新药上市到积累足够数据进行信号检测所需的时间。
作为观察医学结局伙伴关系实验的一部分,我们使用商业上可获得的观察性数据库的数据,计算了所有已上市药物对和 8 个感兴趣的健康结局的最小可检测相对风险。然后,我们研究了一系列分析方法,以确定它们区分预定阳性和阴性药物-结局测试对的能力。阳性对照包含有阳性结局关联证据的活性成分,阴性对照则没有。作为性能衡量指标,我们使用了接收者操作特征曲线下的面积(AUC)。我们比较了使用所有测试对或仅使用具有足够检测 1.25 倍相对风险能力的配对的方法的 AUC。最后,我们研究了 2003-2008 年上市的所有药物,并确定了达到相同最小可检测相对风险阈值所需的时间。
将方法限制在完全有效药物-结局对后,方法的性能有所提高。具有足够检测 1.25 倍相对风险能力的药物-结局对的可用性在不同结局之间差异巨大。根据市场占有率,药物在批准后的第一个月就可能产生相关信号,或者永远达不到足够的效力。
药物和重要结局的发生率决定了估计药物-结局关联时的样本量和方法性能。因此,在选择数据库和结局定义时需要仔细考虑,特别是对于新引入的药物。