Suppr超能文献

自对照病例系列设计的经验表现:开发风险识别和分析系统的经验教训。

Empirical performance of the self-controlled case series design: lessons for developing a risk identification and analysis system.

机构信息

Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA,

出版信息

Drug Saf. 2013 Oct;36 Suppl 1:S83-93. doi: 10.1007/s40264-013-0100-4.

Abstract

BACKGROUND

The self-controlled case series (SCCS) offers potential as an statistical method for risk identification involving medical products from large-scale observational healthcare data. However, analytic design choices remain in encoding the longitudinal health records into the SCCS framework and its risk identification performance across real-world databases is unknown.

OBJECTIVES

To evaluate the performance of SCCS and its design choices as a tool for risk identification in observational healthcare data.

RESEARCH DESIGN

We examined the risk identification performance of SCCS across five design choices using 399 drug-health outcome pairs in five real observational databases (four administrative claims and one electronic health records). In these databases, the pairs involve 165 positive controls and 234 negative controls. We also consider several synthetic databases with known relative risks between drug-outcome pairs.

MEASURES

We evaluate risk identification performance through estimating the area under the receiver-operator characteristics curve (AUC) and bias and coverage probability in the synthetic examples.

RESULTS

The SCCS achieves strong predictive performance. Twelve of the twenty health outcome-database scenarios return AUCs >0.75 across all drugs. Including all adverse events instead of just the first per patient and applying a multivariate adjustment for concomitant drug use are the most important design choices. However, the SCCS as applied here returns relative risk point-estimates biased towards the null value of 1 with low coverage probability.

CONCLUSIONS

The SCCS recently extended to apply a multivariate adjustment for concomitant drug use offers promise as a statistical tool for risk identification in large-scale observational healthcare databases. Poor estimator calibration dampens enthusiasm, but on-going work should correct this short-coming.

摘要

背景

自对照病例系列(SCCS)为利用大规模观察性医疗保健数据中的医疗产品进行风险识别提供了一种潜在的统计方法。然而,在将纵向健康记录编码到 SCCS 框架中以及其在真实数据库中的风险识别性能方面,仍存在分析设计选择。

目的

评估 SCCS 及其设计选择作为观察性医疗保健数据中风险识别工具的性能。

研究设计

我们使用五个真实观察性数据库(四个行政索赔和一个电子健康记录)中的 399 个药物-健康结果对,评估了 SCCS 在五个设计选择中的风险识别性能。在这些数据库中,这些对涉及 165 个阳性对照和 234 个阴性对照。我们还考虑了几个具有已知药物-结果对之间相对风险的合成数据库。

措施

我们通过在合成示例中估计接收器操作特性曲线(AUC)的面积以及偏差和覆盖率概率来评估风险识别性能。

结果

SCCS 具有很强的预测性能。在所有药物中,二十种健康结果-数据库场景中的十二种返回的 AUC 值均大于 0.75。包含所有不良事件而不仅仅是每个患者的第一个不良事件,以及对同时使用的药物进行多变量调整是最重要的设计选择。然而,这里应用的 SCCS 会返回偏向于 1 的无效值的相对风险点估计值,且覆盖率概率较低。

结论

最近扩展到适用于同时使用的药物的多变量调整的 SCCS 为在大规模观察性医疗保健数据库中进行风险识别提供了一种有前途的统计工具。较差的估计器校准降低了热情,但正在进行的工作应纠正这一不足。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验