Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands.
J Dent Res. 2014 Jan;93(1):96-102. doi: 10.1177/0022034513510944. Epub 2013 Oct 29.
Enamel fluorosis is an irreversible structural enamel defect following exposure to supraoptimal levels of fluoride during amelogenesis. We hypothesized that fluorosis is associated with excess release of protons during formation of hypermineralized lines in the mineralizing enamel matrix. We tested this concept by analyzing fluorotic enamel defects in wild-type mice and mice deficient in anion exchanger-2a,b (Ae2a,b), a transmembrane protein in maturation ameloblasts that exchanges extracellular Cl(-) for bicarbonate. Defects were more pronounced in fluorotic Ae2a,b (-/-) mice than in fluorotic heterozygous or wild-type mice. Phenotypes included a hypermineralized surface, extensive subsurface hypomineralization, and multiple hypermineralized lines in deeper enamel. Mineral content decreased in all fluoride-exposed and Ae2a,b(-/-) mice and was strongly correlated with Cl(-). Exposure of enamel surfaces underlying maturation-stage ameloblasts to pH indicator dyes suggested the presence of diffusion barriers in fluorotic enamel. These results support the concept that fluoride stimulates hypermineralization at the mineralization front. This causes increased release of protons, which ameloblasts respond to by secreting more bicarbonates at the expense of Cl(-) levels in enamel. The fluoride-induced hypermineralized lines may form barriers that impede diffusion of proteins and mineral ions into the subsurface layers, thereby delaying biomineralization and causing retention of enamel matrix proteins.
氟斑牙是釉质形成期暴露于过量氟化物后产生的一种不可逆转的结构性釉质缺陷。我们假设氟斑牙与在矿化釉质基质中形成过度矿化线期间质子的过量释放有关。我们通过分析野生型小鼠和阴离子交换体 2a,b 缺陷型(Ae2a,b)小鼠的氟斑牙缺陷来检验这一假说,Ae2a,b 是成熟成釉细胞中一种跨膜蛋白,可将细胞外 Cl(-)交换为碳酸氢盐。氟斑牙 Ae2a,b(-/-) 小鼠中的缺陷比氟斑牙杂合子或野生型小鼠中的缺陷更为明显。表型包括表面过度矿化、广泛的亚表面低矿化和深层釉质中多个过度矿化线。所有暴露于氟化物的小鼠和 Ae2a,b(-/-) 小鼠的矿物质含量都减少,与 Cl(-)呈强相关性。用 pH 指示剂染料处理处于成熟阶段成釉细胞下方的釉质表面表明氟斑牙中存在扩散障碍。这些结果支持氟化物刺激矿化前沿过度矿化的假说。这会导致质子的释放增加,成釉细胞通过分泌更多的碳酸氢盐来应对,从而牺牲釉质中的 Cl(-)水平。氟化物诱导的过度矿化线可能形成障碍,阻碍蛋白质和矿物质离子向亚表面层扩散,从而延迟生物矿化并导致釉质基质蛋白的保留。