Suppr超能文献

钯修饰氮掺杂二氧化钛光催化剂对农业病原菌禾谷镰刀菌的抑菌活性及作用机制。

Antifungal activity and mechanism of palladium-modified nitrogen-doped titanium oxide photocatalyst on agricultural pathogenic fungi Fusarium graminearum.

机构信息

Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , 72 Wenhua Road, Shenyang, Liaoning Province, 110016, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10953-9. doi: 10.1021/am4031196. Epub 2013 Oct 31.

Abstract

Fusarium graminearum is the pathogen for Fusarium head blight (FHB) on wheat, which could significantly reduce grain quality/yield and produce a variety of mycotoxins posing a potential safety concern to human foods. As an environmentally friendly alternative to the commonly used chemical fugicides, a highly effective photocatalytic disinfection of F. graminearum macroconidia under visible light illumination was demonstrated on a visible-light-activated palladium-modified nitrogen-doped titanium oxide (TiON/PdO) nanoparticle photocatalyst. Because of the opposite surface charges of the TiON/PdO nanoparticles and the F. graminearum macroconidium, the nanoparticles were strongly adsorbed onto the macroconidium surface, which is beneficial to the photocatalytic disinfection of these macroconidia. The photocatalytic disinfection mechanism of TiON/PdO nanoparticles on these macroconidia could be attributed to their cell wall/membrane damage caused by the attack from reactive oxygen species (ROSs) as demonstrated by the fluorescence/phase contrast microscopy observations, while a breakage of their cell structure was not necessary for their loss of viability.

摘要

镰刀菌禾谷孢是小麦赤霉病(FHB)的病原体,它会严重降低谷物的质量和产量,并产生多种霉菌毒素,对人类食品构成潜在的安全隐患。作为一种对常用化学杀菌剂的环保替代方法,在可见光照射下,一种高效的光催化钯修饰氮掺杂氧化钛(TiON/PdO)纳米颗粒光催化剂可以对镰刀菌禾谷孢大型分生孢子进行可见光激活消毒。由于 TiON/PdO 纳米颗粒和镰刀菌禾谷孢大型分生孢子的表面电荷相反,纳米颗粒被强烈吸附在大型分生孢子表面,这有利于这些大型分生孢子的光催化消毒。TiON/PdO 纳米颗粒对这些大型分生孢子的光催化消毒机制可以归因于细胞壁/细胞膜的损伤,这是由活性氧(ROS)的攻击引起的,这可以通过荧光/相差显微镜观察到,而不需要破坏它们的细胞结构就可以使其丧失活力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验