Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ 08801, USA.
Nanotechnology. 2013 Nov 29;24(47):475706. doi: 10.1088/0957-4484/24/47/475706. Epub 2013 Oct 31.
Bimodal atomic force microscopy (AFM) is a recently developed technique of dynamic AFM where a higher eigenmode of the cantilever is simultaneously excited along with the fundamental eigenmode. The effects of different operating parameters while imaging an impact copolymer blend of polypropylene (PP) and ethylene-propylene (E-P) rubber in bimodal mode are explored through experiments and numerical simulations. The higher mode amplitude and phase contrasts between the two components of the sample reverse at different points as the free amplitude of the higher eigenmode is increased. Three different regimes are identified experimentally depending on the relative contrast between the PP and the E-P rubber. It is observed that the kinetic energy and free air drive input energy of the two cantilever eigenmodes play a role in determining the regimes of operation. Numerical simulations conducted with appropriate tip-sample interaction forces support the experimental results. An understanding of these regimes and the associated cantilever dynamics will guide a rational approach towards selecting appropriate operating parameters.
双模原子力显微镜(AFM)是一种新兴的动态 AFM 技术,它同时激发悬臂梁的更高本征模式和基本本征模式。通过实验和数值模拟,研究了不同操作参数对聚丙烯(PP)和乙烯-丙烯(E-P)橡胶冲击共混物双模成像的影响。随着更高模式的自由振幅增加,在不同点上,样品的两个组成部分之间的更高模式幅度和相位对比度会反转。根据 PP 和 E-P 橡胶之间的相对对比度,实验中确定了三个不同的区域。观察到两个悬臂梁本征模式的动能和自由空气驱动力输入能量在确定操作区域方面起着重要作用。用适当的针尖-样品相互作用力进行的数值模拟支持实验结果。对这些区域及其相关的悬臂梁动力学的理解将为选择合适的操作参数提供指导。