Suppr超能文献

在单本征模振幅调制原子力显微镜中使用高阶本征模通过小压痕对粘弹性软物质进行成像。

Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy.

作者信息

Nikfarjam Miead, López-Guerra Enrique A, Solares Santiago D, Eslami Babak

机构信息

Department of Mechanical Engineering, University of Maryland, College Park, MD 20740, USA.

Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.

出版信息

Beilstein J Nanotechnol. 2018 Apr 6;9:1116-1122. doi: 10.3762/bjnano.9.103. eCollection 2018.

Abstract

In this short paper we explore the use of higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy (AFM) for the small-indentation imaging of soft viscoelastic materials. In viscoelastic materials, whose response depends on the deformation rate, the tip-sample forces generated as a result of sample deformation increase as the tip velocity increases. Since the eigenfrequencies in a cantilever increase with eigenmode order, and since higher oscillation frequencies lead to higher tip velocities for a given amplitude (in viscoelastic materials), the sample indentation can in some cases be reduced by using higher eigenmodes of the cantilever. This effect competes with the lower sensitivity of higher eigenmodes, due to their larger force constant, which for elastic materials leads to greater indentation for similar amplitudes, compared with lower eigenmodes. We offer a short theoretical discussion of the key underlying concepts, along with numerical simulations and experiments to illustrate a simple recipe for imaging soft viscoelastic matter with reduced indentation.

摘要

在这篇短文中,我们探讨了在单本征模振幅调制原子力显微镜(AFM)中使用高阶本征模对软粘弹性材料进行小压痕成像的方法。在粘弹性材料中,其响应取决于变形速率,由于样品变形而产生的针尖 - 样品力会随着针尖速度的增加而增大。由于悬臂梁中的本征频率随本征模阶数增加,并且由于对于给定振幅(在粘弹性材料中),更高的振荡频率会导致更高的针尖速度,因此在某些情况下,使用悬臂梁的高阶本征模可以减小样品压痕。这种效应与高阶本征模较低的灵敏度相互竞争,这是由于它们具有较大的力常数,对于弹性材料而言,与低阶本征模相比,在相似振幅下会导致更大的压痕。我们对关键的基本概念进行了简短的理论讨论,并通过数值模拟和实验来说明一种用于对软粘弹性物质进行成像且压痕减小的简单方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25e8/5905250/5a7c96d270c2/Beilstein_J_Nanotechnol-09-1116-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验