Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
J Cell Biol. 2013 May 27;201(5):725-40. doi: 10.1083/jcb.201206063.
Synaptic vesicles are embedded in a complex filamentous network at the presynaptic terminal. Before fusion, vesicles are linked to the active zone (AZ) by short filaments (tethers). The identity of the molecules that form and regulate tethers remains unknown, but Rab3-interacting molecule (RIM) is a prominent candidate, given its central role in AZ organization. In this paper, we analyzed presynaptic architecture of RIM1α knockout (KO) mice by cryo-electron tomography. In stark contrast to previous work on dehydrated, chemically fixed samples, our data show significant alterations in vesicle distribution and AZ tethering that could provide a structural basis for the functional deficits of RIM1α KO synapses. Proteasome inhibition reversed these structural defects, suggesting a functional recovery confirmed by electrophysiological recordings. Altogether, our results not only point to the ubiquitin-proteasome system as an important regulator of presynaptic architecture and function but also show that the tethering machinery plays a critical role in exocytosis, converging into a structural model of synaptic vesicle priming by RIM1α.
突触小泡嵌入到突触前末端的复杂丝状网络中。在融合之前,小泡通过短丝(连接蛋白)与活性区(AZ)相连。形成和调节连接蛋白的分子的身份尚不清楚,但 Rab3 相互作用分子 (RIM) 是一个突出的候选者,因为它在 AZ 组织中的核心作用。在本文中,我们通过冷冻电子断层扫描分析了 RIM1α 敲除 (KO) 小鼠的突触前结构。与之前对脱水、化学固定样本的研究形成鲜明对比的是,我们的数据显示出囊泡分布和 AZ 连接蛋白的显著改变,这可能为 RIM1α KO 突触的功能缺陷提供了结构基础。蛋白酶体抑制逆转了这些结构缺陷,通过电生理记录证实了功能恢复。总的来说,我们的结果不仅表明泛素-蛋白酶体系统是突触前结构和功能的重要调节剂,还表明连接蛋白机制在胞吐作用中发挥着关键作用,这为 RIM1α 引发突触囊泡的结构模型提供了依据。