Suppr超能文献

一种用于自动神经尖峰识别的统一框架和方法。

A unified framework and method for automatic neural spike identification.

作者信息

Ekanadham Chaitanya, Tranchina Daniel, Simoncelli Eero P

机构信息

Courant Institute of Mathematical Sciences, New York University, United States.

Courant Institute of Mathematical Sciences, New York University, United States; Center for Neural Science, New York University, United States.

出版信息

J Neurosci Methods. 2014 Jan 30;222:47-55. doi: 10.1016/j.jneumeth.2013.10.001. Epub 2013 Oct 30.

Abstract

Automatic identification of action potentials from one or more extracellular electrode recordings is generally achieved by clustering similar segments of the measured voltage trace, a method that fails (or requires substantial human intervention) for spikes whose waveforms overlap. We formulate the problem in terms of a simple probabilistic model, and develop a unified method to identify spike waveforms along with continuous-valued estimates of their arrival times, even in the presence of overlap. Specifically, we make use of a recent algorithm known as Continuous Basis Pursuit for solving linear inverse problems in which the component occurrences are sparse and are at arbitrary continuous-valued times. We demonstrate significant performance improvements over current state-of-the-art clustering methods for four simulated and two real data sets with ground truth, each of which has previously been used as a benchmark for spike sorting. In addition, performance of our method on each of these data sets surpasses that of the best possible clustering method (i.e., one that is specifically optimized to minimize errors on each data set). Finally, the algorithm is almost completely automated, with a computational cost that scales well for multi-electrode arrays.

摘要

从一个或多个细胞外电极记录中自动识别动作电位,通常是通过对测量电压轨迹的相似片段进行聚类来实现的。对于波形重叠的尖峰,这种方法会失败(或需要大量人工干预)。我们根据一个简单的概率模型来阐述这个问题,并开发了一种统一的方法来识别尖峰波形及其到达时间的连续值估计,即使存在重叠情况。具体来说,我们利用一种称为连续基追踪的最新算法来解决线性逆问题,其中分量出现的情况是稀疏的,且时间为任意连续值。对于四个模拟数据集和两个带有真实情况的真实数据集,我们展示了相对于当前最先进的聚类方法在性能上的显著提升,每个数据集此前都被用作尖峰分类的基准。此外,我们的方法在每个这些数据集上的性能都超过了最佳可能的聚类方法(即专门针对最小化每个数据集上的误差进行优化的方法)。最后,该算法几乎完全自动化,对于多电极阵列,其计算成本具有良好的扩展性。

相似文献

1
A unified framework and method for automatic neural spike identification.
J Neurosci Methods. 2014 Jan 30;222:47-55. doi: 10.1016/j.jneumeth.2013.10.001. Epub 2013 Oct 30.
2
Sparse Coding and Compressive Sensing for Overlapping Neural Spike Sorting.
IEEE Trans Neural Syst Rehabil Eng. 2018 Aug;26(8):1516-1525. doi: 10.1109/TNSRE.2018.2848463. Epub 2018 Jun 18.
3
Spike sorting with hidden Markov models.
J Neurosci Methods. 2008 Sep 15;174(1):126-34. doi: 10.1016/j.jneumeth.2008.06.011. Epub 2008 Jun 21.
4
A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings.
PLoS One. 2013 May 3;8(5):e62123. doi: 10.1371/journal.pone.0062123. Print 2013.
5
Consensus-Based Sorting of Neuronal Spike Waveforms.
PLoS One. 2016 Aug 18;11(8):e0160494. doi: 10.1371/journal.pone.0160494. eCollection 2016.
6
7
Computationally efficient simulation of extracellular recordings with multielectrode arrays.
J Neurosci Methods. 2012 Oct 15;211(1):133-44. doi: 10.1016/j.jneumeth.2012.08.011. Epub 2012 Aug 30.
8
Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes.
J Neurophysiol. 2003 Apr;89(4):2245-58. doi: 10.1152/jn.00827.2002. Epub 2002 Dec 18.
9
MEArec: A Fast and Customizable Testbench Simulator for Ground-truth Extracellular Spiking Activity.
Neuroinformatics. 2021 Jan;19(1):185-204. doi: 10.1007/s12021-020-09467-7.

引用本文的文献

1
Interpretable deep learning for deconvolutional analysis of neural signals.
Neuron. 2025 Apr 16;113(8):1151-1168.e13. doi: 10.1016/j.neuron.2025.02.006. Epub 2025 Mar 12.
2
Suppression of crosstalk in multielectrode arrays with local shielding.
Front Nanotechnol. 2022;4. doi: 10.3389/fnano.2022.948337. Epub 2022 Aug 4.
3
Empirical modeling and prediction of neuronal dynamics.
Biol Cybern. 2024 Apr;118(1-2):83-110. doi: 10.1007/s00422-024-00986-z. Epub 2024 Apr 10.
4
Interpretable deep learning for deconvolutional analysis of neural signals.
bioRxiv. 2024 Dec 2:2024.01.05.574379. doi: 10.1101/2024.01.05.574379.
5
Functional clustering of neuronal signals with FMM mixture models.
Heliyon. 2023 Oct 10;9(10):e20639. doi: 10.1016/j.heliyon.2023.e20639. eCollection 2023 Oct.
6
HTsort: Enabling Fast and Accurate Spike Sorting on Multi-Electrode Arrays.
Front Comput Neurosci. 2021 Jun 21;15:657151. doi: 10.3389/fncom.2021.657151. eCollection 2021.
8
Compatibility Evaluation of Clustering Algorithms for Contemporary Extracellular Neural Spike Sorting.
Front Syst Neurosci. 2020 Jun 30;14:34. doi: 10.3389/fnsys.2020.00034. eCollection 2020.
10
Continuing progress of spike sorting in the era of big data.
Curr Opin Neurobiol. 2019 Apr;55:90-96. doi: 10.1016/j.conb.2019.02.007. Epub 2019 Mar 8.

本文引用的文献

1
Recovery of sparse translation-invariant signals with continuous basis pursuit.
IEEE Trans Signal Process. 2011 Oct 1;59(10). doi: 10.1109/TSP.2011.2160058.
2
A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings.
PLoS One. 2013 May 3;8(5):e62123. doi: 10.1371/journal.pone.0062123. Print 2013.
3
Fast, scalable, Bayesian spike identification for multi-electrode arrays.
PLoS One. 2011;6(7):e19884. doi: 10.1371/journal.pone.0019884. Epub 2011 Jul 20.
4
Kalman filter mixture model for spike sorting of non-stationary data.
J Neurosci Methods. 2011 Mar 15;196(1):159-69. doi: 10.1016/j.jneumeth.2010.12.002. Epub 2010 Dec 21.
5
An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes.
J Comput Neurosci. 2010 Aug;29(1-2):127-148. doi: 10.1007/s10827-009-0163-5. Epub 2009 Jun 5.
6
The structure of large-scale synchronized firing in primate retina.
J Neurosci. 2009 Apr 15;29(15):5022-31. doi: 10.1523/JNEUROSCI.5187-08.2009.
7
Synchronized firing in the retina.
Curr Opin Neurobiol. 2008 Aug;18(4):396-402. doi: 10.1016/j.conb.2008.09.010. Epub 2008 Oct 27.
8
Spatio-temporal correlations and visual signalling in a complete neuronal population.
Nature. 2008 Aug 21;454(7207):995-9. doi: 10.1038/nature07140. Epub 2008 Jul 23.
9
A nonparametric Bayesian alternative to spike sorting.
J Neurosci Methods. 2008 Aug 15;173(1):1-12. doi: 10.1016/j.jneumeth.2008.04.030. Epub 2008 May 16.
10
Simultaneous Studies of Firing Patterns in Several Neurons.
Science. 1964 Mar 20;143(3612):1325-7. doi: 10.1126/science.143.3612.1325.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验