Suppr超能文献

大数据时代的尖峰电位分类学持续进展。

Continuing progress of spike sorting in the era of big data.

机构信息

Civil and Environmental Engineering, Biostatistics and Bioinformatics, Duke University, United States.

Electrical and Computer Engineering, Duke University, United States.

出版信息

Curr Opin Neurobiol. 2019 Apr;55:90-96. doi: 10.1016/j.conb.2019.02.007. Epub 2019 Mar 8.

Abstract

Engineering efforts are currently attempting to build devices capable of collecting neural activity from one million neurons in the brain. Part of this effort focuses on developing dense multiple-electrode arrays, which require post-processing via 'spike sorting' to extract neural spike trains from the raw signal. Gathering information at this scale will facilitate fascinating science, but these dreams are only realizable if the spike sorting procedure and data pipeline are computationally scalable, at or superior to hand processing, and scientifically reproducible. These challenges are all being amplified as the data scale continues to increase. In this review, recent efforts to attack these challenges are discussed, which have primarily focused on increasing accuracy and reliability while being computationally scalable. These goals are addressed by adding additional stages to the data processing pipeline and using divide-and-conquer algorithmic approaches. These recent developments should prove useful to most research groups regardless of data scale, not just for cutting-edge devices.

摘要

工程努力目前正试图构建能够从大脑中的一百万神经元中收集神经活动的设备。这项工作的一部分重点是开发密集型多电极阵列,这需要通过“尖峰排序”进行后处理,以从原始信号中提取神经尖峰序列。在这个规模上收集信息将促进引人入胜的科学研究,但只有当尖峰排序过程和数据管道在计算上具有可扩展性、达到或优于手动处理并且在科学上可重复时,这些梦想才是可行的。随着数据规模的持续增加,这些挑战都在加剧。在这篇综述中,讨论了最近为应对这些挑战所做的努力,这些努力主要集中在提高准确性和可靠性的同时保持计算上的可扩展性。通过在数据处理管道中添加额外的阶段并使用分而治之的算法方法来实现这些目标。这些最新的发展对于大多数研究小组都将是有用的,而不仅仅是对于最先进的设备。

相似文献

1
Continuing progress of spike sorting in the era of big data.大数据时代的尖峰电位分类学持续进展。
Curr Opin Neurobiol. 2019 Apr;55:90-96. doi: 10.1016/j.conb.2019.02.007. Epub 2019 Mar 8.
3
A Novel and Simple Spike Sorting Implementation.一种新颖且简单的尖峰分类实现方法。
IEEE Trans Neural Syst Rehabil Eng. 2017 Apr;25(4):323-333. doi: 10.1109/TNSRE.2016.2640858. Epub 2016 Dec 15.

引用本文的文献

2
Advanced Brain-on-a-Chip for Wetware Computing: A Review.用于湿件计算的先进片上脑:综述
Adv Sci (Weinh). 2025 Sep;12(33):e08120. doi: 10.1002/advs.202508120. Epub 2025 Jul 23.
9
Functional clustering of neuronal signals with FMM mixture models.使用有限混合模型对神经元信号进行功能聚类。
Heliyon. 2023 Oct 10;9(10):e20639. doi: 10.1016/j.heliyon.2023.e20639. eCollection 2023 Oct.

本文引用的文献

6
A Fully Automated Approach to Spike Sorting.一种用于尖峰排序的全自动方法。
Neuron. 2017 Sep 13;95(6):1381-1394.e6. doi: 10.1016/j.neuron.2017.08.030.
9
Model-based spike sorting with a mixture of drifting t-distributions.基于混合漂移t分布的基于模型的尖峰排序
J Neurosci Methods. 2017 Aug 15;288:82-98. doi: 10.1016/j.jneumeth.2017.06.017. Epub 2017 Jun 23.
10
Recent progress in multi-electrode spike sorting methods.多电极尖峰分类方法的最新进展。
J Physiol Paris. 2016 Nov;110(4 Pt A):327-335. doi: 10.1016/j.jphysparis.2017.02.005. Epub 2017 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验