Suppr超能文献

癌症的声与光声分子成像。

Acoustic and photoacoustic molecular imaging of cancer.

机构信息

Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, California.

出版信息

J Nucl Med. 2013 Nov;54(11):1851-4. doi: 10.2967/jnumed.112.115568.

Abstract

Ultrasound and combined optical and ultrasonic (photoacoustic) molecular imaging have shown great promise in the visualization and monitoring of cancer through imaging of vascular and extravascular molecular targets. Contrast-enhanced ultrasound with molecularly targeted microbubbles can detect early-stage cancer through the visualization of targets expressed on the angiogenic vasculature of tumors. Ultrasonic molecular imaging can be extended to the imaging of extravascular targets through use of nanoscale, phase-change droplets and photoacoustic imaging, which provides further molecular information on cancer given by the chemical composition of tissues and by targeted nanoparticles that can interact with extravascular tissues at the receptor level. A new generation of targeted contrast agents goes beyond merely increasing imaging signal at the site of target expression but shows activatable and differential contrast depending on their interactions with the tumor microenvironment. These innovations may further improve our ability to detect and characterize tumors. In this review, recent developments in acoustic and photoacoustic molecular imaging of cancer are discussed.

摘要

超声及光声(超声)联合分子成像技术在可视化和监测癌症方面具有广阔的应用前景,可对血管内和血管外的分子靶标进行成像。通过对肿瘤新生血管表达的靶标进行显影,对比增强超声联合靶向微泡可实现早期癌症的检测。通过使用纳米级、相变型液滴和光声成像,超声分子成像可扩展至对血管外靶标的成像,从而为癌症提供进一步的分子信息,包括组织的化学成分以及与血管外组织在受体水平相互作用的靶向纳米颗粒。新一代靶向造影剂不仅能增强靶标表达部位的成像信号,还能根据其与肿瘤微环境的相互作用,显示出激活的和差异化的对比。这些创新可能进一步提高我们检测和诊断肿瘤的能力。本文就癌症的声学和光声分子成像的最新进展进行综述。

相似文献

1
Acoustic and photoacoustic molecular imaging of cancer.
J Nucl Med. 2013 Nov;54(11):1851-4. doi: 10.2967/jnumed.112.115568.
2
Porphyrin Nanodroplets: Sub-micrometer Ultrasound and Photoacoustic Contrast Imaging Agents.
Small. 2016 Jan 20;12(3):371-80. doi: 10.1002/smll.201502450. Epub 2015 Dec 3.
4
Quantitative photoacoustic imaging of nanoparticles in cells and tissues.
ACS Nano. 2013 Feb 26;7(2):1272-80. doi: 10.1021/nn304739s. Epub 2013 Jan 17.
5
Advancements in photoacoustic imaging for cancer diagnosis and treatment.
Int J Pharm. 2024 Nov 15;665:124736. doi: 10.1016/j.ijpharm.2024.124736. Epub 2024 Sep 24.
6
Multispectral Photoacoustic Imaging of Tumor Protease Activity with a Gold Nanocage-Based Activatable Probe.
Mol Imaging Biol. 2018 Dec;20(6):919-929. doi: 10.1007/s11307-018-1203-1.
7
Recent Development of Technology and Application of Photoacoustic Molecular Imaging Toward Clinical Translation.
J Nucl Med. 2018 Aug;59(8):1202-1207. doi: 10.2967/jnumed.117.201459. Epub 2018 May 31.
10
An Activatable Cancer-Targeted Hydrogen Peroxide Probe for Photoacoustic and Fluorescence Imaging.
Cancer Res. 2019 Oct 15;79(20):5407-5417. doi: 10.1158/0008-5472.CAN-19-0691. Epub 2019 Aug 27.

引用本文的文献

2
3
Manganese-derived biomaterials for tumor diagnosis and therapy.
J Nanobiotechnology. 2024 Jun 15;22(1):335. doi: 10.1186/s12951-024-02629-8.
4
An extremum-guided interpolation for sparsely sampled photoacoustic imaging.
Photoacoustics. 2023 Jul 19;32:100535. doi: 10.1016/j.pacs.2023.100535. eCollection 2023 Aug.
6
Innovative Imaging Techniques Used to Evaluate Borderline-Resectable Pancreatic Adenocarcinoma.
J Surg Res. 2023 Apr;284:42-53. doi: 10.1016/j.jss.2022.10.008. Epub 2022 Dec 17.
7
Progress in Probe-Based Sensing Techniques for In Vivo Diagnosis.
Biosensors (Basel). 2022 Oct 31;12(11):943. doi: 10.3390/bios12110943.
8
Recent Progress Toward Imaging Application of Multifunction Sonosensitizers in Sonodynamic Therapy.
Int J Nanomedicine. 2022 Aug 6;17:3511-3529. doi: 10.2147/IJN.S370767. eCollection 2022.
9
Exogenous Contrast Agents in Photoacoustic Imaging: An In Vivo Review for Tumor Imaging.
Nanomaterials (Basel). 2022 Jan 25;12(3):393. doi: 10.3390/nano12030393.

本文引用的文献

1
In vivo photoacoustic lifetime imaging of tumor hypoxia in small animals.
J Biomed Opt. 2013 Jul;18(7):076019. doi: 10.1117/1.JBO.18.7.076019.
2
Detection of pancreatic ductal adenocarcinoma in mice by ultrasound imaging of thymocyte differentiation antigen 1.
Gastroenterology. 2013 Oct;145(4):885-894.e3. doi: 10.1053/j.gastro.2013.06.011. Epub 2013 Jun 18.
3
Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology.
Cancer Res. 2013 Apr 15;73(8):2412-7. doi: 10.1158/0008-5472.CAN-12-4561. Epub 2013 Feb 19.
4
Ligand-mediated self-assembly of hybrid plasmonic and superparamagnetic nanostructures.
Langmuir. 2013 Feb 26;29(8):2465-70. doi: 10.1021/la3037549. Epub 2013 Feb 12.
5
Molecular photoacoustic imaging of follicular thyroid carcinoma.
Clin Cancer Res. 2013 Mar 15;19(6):1494-502. doi: 10.1158/1078-0432.CCR-12-3061. Epub 2013 Jan 24.
6
Earlier detection of breast cancer with ultrasound molecular imaging in a transgenic mouse model.
Cancer Res. 2013 Mar 15;73(6):1689-98. doi: 10.1158/0008-5472.CAN-12-3391. Epub 2013 Jan 17.
7
Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer.
Ultrasound Med Biol. 2013 Mar;39(3):475-89. doi: 10.1016/j.ultrasmedbio.2012.10.004. Epub 2013 Jan 11.
9
Ultrasound for molecular imaging and therapy in cancer.
Quant Imaging Med Surg. 2012 Jun;2(2):87-97. doi: 10.3978/j.issn.2223-4292.2012.06.06.
10
The high angiogenic activity in very early breast cancer enables reliable imaging with VEGFR2-targeted microbubbles (BR55).
Eur Radiol. 2013 Feb;23(2):468-75. doi: 10.1007/s00330-012-2594-z. Epub 2012 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验