Seriès Peggy, Seitz Aaron R
Department of Informatics, University of Edinburgh Edinburgh, UK.
Front Hum Neurosci. 2013 Oct 24;7:668. doi: 10.3389/fnhum.2013.00668.
Expectations are known to greatly affect our experience of the world. A growing theory in computational neuroscience is that perception can be successfully described using Bayesian inference models and that the brain is "Bayes-optimal" under some constraints. In this context, expectations are particularly interesting, because they can be viewed as prior beliefs in the statistical inference process. A number of questions remain unsolved, however, for example: How fast do priors change over time? Are there limits in the complexity of the priors that can be learned? How do an individual's priors compare to the true scene statistics? Can we unlearn priors that are thought to correspond to natural scene statistics? Where and what are the neural substrate of priors? Focusing on the perception of visual motion, we here review recent studies from our laboratories and others addressing these issues. We discuss how these data on motion perception fit within the broader literature on perceptual Bayesian priors, perceptual expectations, and statistical and perceptual learning and review the possible neural basis of priors.
众所周知,期望会极大地影响我们对世界的体验。计算神经科学中一个日益发展的理论是,感知可以通过贝叶斯推理模型成功描述,并且大脑在某些约束条件下是“贝叶斯最优”的。在这种背景下,期望尤其有趣,因为它们可以被视为统计推理过程中的先验信念。然而,仍有许多问题尚未解决,例如:先验随时间变化的速度有多快?可学习的先验的复杂性是否存在限制?个体的先验与真实场景统计数据相比如何?我们能否摒弃那些被认为与自然场景统计数据相对应的先验?先验的神经基质在哪里以及是什么?专注于视觉运动感知,我们在此回顾来自我们实验室及其他机构近期针对这些问题的研究。我们讨论这些关于运动感知的数据如何与关于感知贝叶斯先验、感知期望以及统计和感知学习的更广泛文献相契合,并回顾先验可能的神经基础。