Suppr超能文献

内质网应激时肌醇需求的增加是通过激活 mTORC1 信号来实现的。

Golgi enlargement in Arf-depleted yeast cells is due to altered dynamics of cisternal maturation.

机构信息

Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210 MH, India.

出版信息

J Cell Sci. 2014 Jan 1;127(Pt 1):250-7. doi: 10.1242/jcs.140996. Epub 2013 Nov 4.

Abstract

Regulation of the size and abundance of membrane compartments is a fundamental cellular activity. In Saccharomyces cerevisiae, disruption of the ADP-ribosylation factor 1 (ARF1) gene yields larger and fewer Golgi cisternae by partially depleting the Arf GTPase. We observed a similar phenotype with a thermosensitive mutation in Nmt1, which myristoylates and activates Arf. Therefore, partial depletion of Arf is a convenient tool for dissecting mechanisms that regulate Golgi structure. We found that in arf1Δ cells, late Golgi structure is particularly abnormal, with the number of late Golgi cisternae being severely reduced. This effect can be explained by selective changes in cisternal maturation kinetics. The arf1Δ mutation causes early Golgi cisternae to mature more slowly and less frequently, but does not alter the maturation of late Golgi cisternae. These changes quantitatively explain why late Golgi cisternae are fewer in number and correspondingly larger. With a stacked Golgi, similar changes in maturation kinetics could be used by the cell to modulate the number of cisternae per stack. Thus, the rates of processes that transform a maturing compartment can determine compartmental size and copy number.

摘要

膜隔室的大小和丰度的调节是一种基本的细胞活动。在酿酒酵母中,通过部分耗尽 Arf GTPase,破坏 ADP-ribosylation 因子 1(ARF1)基因会产生更大和更少的高尔基体潴泡。我们在 Nmt1 的热敏感突变体中观察到类似的表型,Nmt1 酰化并激活 Arf。因此,Arf 的部分耗尽是用于剖析调节高尔基体结构的机制的便捷工具。我们发现,在 arf1Δ 细胞中,晚期高尔基体结构特别异常,晚期高尔基体潴泡的数量严重减少。这种效应可以通过顺式膜成熟动力学的选择性变化来解释。arf1Δ 突变导致早期高尔基体潴泡成熟更慢且更不频繁,但不会改变晚期高尔基体潴泡的成熟。这些变化定量地解释了为什么晚期高尔基体潴泡数量较少且相应较大。在堆叠的高尔基体中,类似的成熟动力学变化可被细胞用来调节每个堆叠中的潴泡数量。因此,将成熟隔室转化的过程的速率可以决定隔室的大小和拷贝数。

相似文献

1
Golgi enlargement in Arf-depleted yeast cells is due to altered dynamics of cisternal maturation.
J Cell Sci. 2014 Jan 1;127(Pt 1):250-7. doi: 10.1242/jcs.140996. Epub 2013 Nov 4.
2
Vps74p controls Golgi size in an Arf1-dependent manner.
FEBS Lett. 2018 Nov;592(22):3720-3735. doi: 10.1002/1873-3468.13266. Epub 2018 Oct 24.
3
Establishing Regulation of a Dynamic Process by Ypt/Rab GTPases : A Case for Cisternal Progression.
Methods Mol Biol. 2021;2293:189-199. doi: 10.1007/978-1-0716-1346-7_13.
4
Live imaging of yeast Golgi cisternal maturation.
Nature. 2006 Jun 22;441(7096):1007-10. doi: 10.1038/nature04737. Epub 2006 May 14.
5
ARF is required for maintenance of yeast Golgi and endosome structure and function.
Mol Biol Cell. 1998 Mar;9(3):653-70. doi: 10.1091/mbc.9.3.653.
7
Regulation of Golgi Cisternal Progression by Ypt/Rab GTPases.
Dev Cell. 2016 Feb 22;36(4):440-52. doi: 10.1016/j.devcel.2016.01.016.
8
Golgi maturation visualized in living yeast.
Nature. 2006 Jun 22;441(7096):1002-6. doi: 10.1038/nature04717. Epub 2006 May 14.
9
Maturation-driven transport and AP-1-dependent recycling of a secretory cargo in the Golgi.
J Cell Biol. 2019 May 6;218(5):1582-1601. doi: 10.1083/jcb.201807195. Epub 2019 Mar 11.
10
COPI is essential for Golgi cisternal maturation and dynamics.
J Cell Sci. 2016 Sep 1;129(17):3251-61. doi: 10.1242/jcs.193367. Epub 2016 Jul 21.

引用本文的文献

1
RudLOV is an optically synchronized cargo transport method revealing unexpected effects of dynasore.
EMBO Rep. 2025 Feb;26(3):613-634. doi: 10.1038/s44319-024-00342-z. Epub 2024 Dec 10.
2
The Arf-GAP Age2 localizes to the late-Golgi via a conserved amphipathic helix.
Mol Biol Cell. 2023 Nov 1;34(12):ar119. doi: 10.1091/mbc.E23-07-0283. Epub 2023 Sep 6.
3
The Arf-GAP Age2 localizes to the late-Golgi via a conserved amphipathic helix.
bioRxiv. 2023 Jul 24:2023.07.23.550229. doi: 10.1101/2023.07.23.550229.
4
Robustness and Universality in Organelle Size Control.
Phys Rev Lett. 2023 Jan 6;130(1):018401. doi: 10.1103/PhysRevLett.130.018401.
5
Regulation of organelle size and organization during development.
Semin Cell Dev Biol. 2023 Jan 15;133:53-64. doi: 10.1016/j.semcdb.2022.02.002. Epub 2022 Feb 8.
6
Shared and specific functions of Arfs 1-5 at the Golgi revealed by systematic knockouts.
J Cell Biol. 2022 Jan 3;221(1). doi: 10.1083/jcb.202106100. Epub 2021 Nov 8.
7
Establishing Regulation of a Dynamic Process by Ypt/Rab GTPases : A Case for Cisternal Progression.
Methods Mol Biol. 2021;2293:189-199. doi: 10.1007/978-1-0716-1346-7_13.
8
Exofacial membrane composition and lipid metabolism regulates plasma membrane P4-ATPase substrate specificity.
J Biol Chem. 2020 Dec 25;295(52):17997-18009. doi: 10.1074/jbc.RA120.014794. Epub 2020 Oct 15.
9
A minimal self-organisation model of the Golgi apparatus.
Elife. 2020 Aug 5;9:e47318. doi: 10.7554/eLife.47318.
10
Loss of Function Affects Golgi Structure, Plant Growth and Tolerance to Salt Stress.
Front Plant Sci. 2020 Apr 15;11:430. doi: 10.3389/fpls.2020.00430. eCollection 2020.

本文引用的文献

1
Arf GTPase regulation through cascade mechanisms and positive feedback loops.
FEBS Lett. 2013 Jun 27;587(13):2028-35. doi: 10.1016/j.febslet.2013.05.015. Epub 2013 May 16.
2
Fusion and fission: interlinked processes critical for mitochondrial health.
Annu Rev Genet. 2012;46:265-87. doi: 10.1146/annurev-genet-110410-132529. Epub 2012 Aug 29.
3
Mechanisms of intracellular scaling.
Annu Rev Cell Dev Biol. 2012;28:113-35. doi: 10.1146/annurev-cellbio-092910-154158. Epub 2012 Jul 12.
4
Organelle size control systems: from cell geometry to organelle-directed medicine.
Bioessays. 2012 Sep;34(9):721-4. doi: 10.1002/bies.201200043. Epub 2012 Jul 4.
5
Organelle growth control through limiting pools of cytoplasmic components.
Curr Biol. 2012 May 8;22(9):R330-9. doi: 10.1016/j.cub.2012.03.046. Epub 2012 May 7.
6
Phosphoinositide-mediated clathrin adaptor progression at the trans-Golgi network.
Nat Cell Biol. 2012 Feb 19;14(3):239-48. doi: 10.1038/ncb2427.
8
Membrane dynamics and fusion at late endosomes and vacuoles--Rab regulation, multisubunit tethering complexes and SNAREs.
Eur J Cell Biol. 2011 Sep;90(9):779-85. doi: 10.1016/j.ejcb.2011.04.007. Epub 2011 Jun 16.
9
Control of organelle size: the Golgi complex.
Annu Rev Cell Dev Biol. 2011;27:57-77. doi: 10.1146/annurev-cellbio-100109-104003. Epub 2011 May 31.
10
ARF family G proteins and their regulators: roles in membrane transport, development and disease.
Nat Rev Mol Cell Biol. 2011 Jun;12(6):362-75. doi: 10.1038/nrm3117. Epub 2011 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验