Suppr超能文献

通过生物细胞打印制造的 3D 快速原型聚己内酯支架的首次系统分析:孔径和几何形状对压缩力学性能和体外 hMSC 活力的影响。

The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.

机构信息

Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria (IPL), Leiria, Portugal.

出版信息

Biofabrication. 2013 Dec;5(4):045004. doi: 10.1088/1758-5082/5/4/045004. Epub 2013 Nov 6.

Abstract

Novel additive manufacturing processes are increasingly recognized as ideal techniques to produce 3D biodegradable structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. With regard to the mechanical and biological performances of 3D scaffolds, pore size and geometry play a crucial role. In this study, a novel integrated automated system for the production and in vitro culture of 3D constructs, known as BioCell Printing, was used only to manufacture poly(ε-caprolactone) scaffolds for tissue engineering; the influence of pore size and shape on their mechanical and biological performances was investigated. Imposing a single lay-down pattern of 0°/90° and varying the filament distance, it was possible to produce scaffolds with square interconnected pores with channel sizes falling in the range of 245-433 µm, porosity 49-57% and a constant road width. Three different lay-down patterns were also adopted (0°/90°, 0°/60/120° and 0°/45°/90°/135°), thus resulting in scaffolds with quadrangular, triangular and complex internal geometries, respectively. Mechanical compression tests revealed a decrease of scaffold stiffness with the increasing porosity and number of deposition angles (from 0°/90° to 0°/45°/90°/135°). Results from biological analysis, carried out using human mesenchymal stem cells, suggest a strong influence of pore size and geometry on cell viability. On the other hand, after 21 days of in vitro static culture, it was not possible to detect any significant variation in terms of cell morphology promoted by scaffold topology. As a first systematic analysis, the obtained results clearly demonstrate the potential of the BioCell Printing process to produce 3D scaffolds with reproducible well organized architectures and tailored mechanical properties.

摘要

新型增材制造工艺越来越被认为是生产具有最佳孔径和空间分布的 3D 可生物降解结构的理想技术,为组织再生提供足够的机械支撑,同时塑造向内生长的组织。就 3D 支架的机械和生物性能而言,孔径和几何形状起着至关重要的作用。在这项研究中,使用了一种新型的 3D 构建物生产和体外培养的集成自动化系统,称为生物细胞打印,仅用于制造用于组织工程的聚(ε-己内酯)支架;研究了孔径和形状对其机械和生物性能的影响。通过施加单一的 0°/90°铺层图案并改变丝条距离,可以生产出具有正方形互连孔的支架,其通道尺寸在 245-433µm 范围内,孔隙率为 49-57%,道路宽度恒定。还采用了三种不同的铺层图案(0°/90°、0°/60/120°和 0°/45°/90°/135°),从而分别得到具有四边形、三角形和复杂内部几何形状的支架。机械压缩试验表明,支架刚度随孔隙率和沉积角度数量的增加而降低(从 0°/90°到 0°/45°/90°/135°)。使用人骨髓间充质干细胞进行的生物分析结果表明,孔径和几何形状对细胞活力有很大影响。另一方面,在体外静态培养 21 天后,支架拓扑结构对细胞形态的促进作用没有任何显著变化。作为首次系统分析,获得的结果清楚地表明了生物细胞打印工艺生产具有可重复的组织有序结构和定制机械性能的 3D 支架的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验