Suppr超能文献

革兰氏阳性菌和革兰氏阴性菌毒素在脓毒症中的作用:简要综述。

Gram-positive and gram-negative bacterial toxins in sepsis: a brief review.

机构信息

Center for Vaccine Development; Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA.

出版信息

Virulence. 2014 Jan 1;5(1):213-8. doi: 10.4161/viru.27024. Epub 2013 Nov 5.

Abstract

Bacterial sepsis is a major cause of fatality worldwide. Sepsis is a multi-step process that involves an uncontrolled inflammatory response by the host cells that may result in multi organ failure and death. Both gram-negative and gram-positive bacteria play a major role in causing sepsis. These bacteria produce a range of virulence factors that enable them to escape the immune defenses and disseminate to remote organs, and toxins that interact with host cells via specific receptors on the cell surface and trigger a dysregulated immune response. Over the past decade, our understanding of toxins has markedly improved, allowing for new therapeutic strategies to be developed. This review summarizes some of these toxins and their role in sepsis.

摘要

细菌败血症是全球范围内主要的致死原因。败血症是一个多步骤的过程,涉及宿主细胞的失控性炎症反应,可能导致多器官衰竭和死亡。革兰氏阴性菌和革兰氏阳性菌在引起败血症方面都起着重要作用。这些细菌产生一系列毒力因子,使它们能够逃避免疫防御并传播到远处的器官,并通过细胞表面的特定受体与宿主细胞相互作用的毒素,触发失调的免疫反应。在过去的十年中,我们对毒素的理解有了显著的提高,这使得新的治疗策略得以开发。这篇综述总结了其中一些毒素及其在败血症中的作用。

相似文献

1
Gram-positive and gram-negative bacterial toxins in sepsis: a brief review.
Virulence. 2014 Jan 1;5(1):213-8. doi: 10.4161/viru.27024. Epub 2013 Nov 5.
2
Virulence factors of gram-negative bacteria in sepsis with a focus on Neisseria meningitidis.
Contrib Microbiol. 2011;17:31-47. doi: 10.1159/000324008. Epub 2011 Jun 9.
3
Role of pore-forming toxins in neonatal sepsis.
Clin Dev Immunol. 2013;2013:608456. doi: 10.1155/2013/608456. Epub 2013 Apr 23.
4
Gram-positive sepsis. Mechanisms and differences from gram-negative sepsis.
Infect Dis Clin North Am. 1999 Jun;13(2):397-412. doi: 10.1016/s0891-5520(05)70082-9.
5
Pathogenicity islands and their role in bacterial virulence and survival.
Contrib Microbiol. 2005;12:234-254. doi: 10.1159/000081698.
6
Autophagy and toxins: a matter of life or death.
Curr Mol Med. 2013 Feb;13(2):241-51. doi: 10.2174/156652413804810790.
7
Different bacteria species lipopolysaccharide co-exposure with Pseudomonas exotoxin A on multiple organ injury induction.
Immunopharmacol Immunotoxicol. 2009;31(4):616-24. doi: 10.3109/08923970902926402.
8
Endothelial responses to bacterial toxins in sepsis.
Crit Rev Immunol. 2003;23(4):267-99. doi: 10.1615/critrevimmunol.v23.i4.20.
9
Pseudomonas exotoxin A: from virulence factor to anti-cancer agent.
Int J Med Microbiol. 2009 Mar;299(3):161-76. doi: 10.1016/j.ijmm.2008.08.003. Epub 2008 Oct 23.
10
Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins.
Annu Rev Microbiol. 2008;62:271-88. doi: 10.1146/annurev.micro.62.081307.162848.

引用本文的文献

1
Irisin alleviated sepsis via enhancing macrophage phagocytosis and reducing inflammation levels.
Front Immunol. 2025 Aug 15;16:1618699. doi: 10.3389/fimmu.2025.1618699. eCollection 2025.
3
Biofilm Formation of in Cystic Fibrosis: Mechanisms of Persistence, Adaptation, and Pathogenesis.
Microorganisms. 2025 Jun 30;13(7):1527. doi: 10.3390/microorganisms13071527.
4
A promising approach to diabetic osteoporosis: oxymatrine's effects on gut microbiota and osteoblasts.
Nutr Diabetes. 2025 May 7;15(1):19. doi: 10.1038/s41387-025-00374-x.
5
P62 inhibits IL-1β release during Typhimurium infection of macrophages.
Front Cell Infect Microbiol. 2025 Apr 10;15:1495567. doi: 10.3389/fcimb.2025.1495567. eCollection 2025.
8
Clays enhanced with niobium: potential in wastewater treatment and reuse as pigment with antibacterial activity.
Beilstein J Nanotechnol. 2025 Feb 10;16:141-154. doi: 10.3762/bjnano.16.13. eCollection 2025.
9
Emerging Resistance and Virulence Patterns in : Insights into Silver Nanoparticles as an Antimicrobial Strategy.
Antibiotics (Basel). 2025 Jan 7;14(1):46. doi: 10.3390/antibiotics14010046.

本文引用的文献

1
The contribution of group A streptococcal virulence determinants to the pathogenesis of sepsis.
Virulence. 2014 Jan 1;5(1):127-36. doi: 10.4161/viru.26400. Epub 2013 Oct 9.
3
Antimicrobial peptides: clinical relevance and therapeutic implications.
Peptides. 2012 Aug;36(2):308-14. doi: 10.1016/j.peptides.2012.05.014. Epub 2012 Jun 1.
4
Sialyl residues modulate LPS-mediated signaling through the Toll-like receptor 4 complex.
PLoS One. 2012;7(4):e32359. doi: 10.1371/journal.pone.0032359. Epub 2012 Apr 9.
5
Novel approaches to the treatment of systemic anthrax.
Clin Infect Dis. 2012 Apr;54(8):1148-61. doi: 10.1093/cid/cis017.
6
Updating perspectives on the initiation of Bacillus anthracis growth and dissemination through its host.
Infect Immun. 2012 May;80(5):1626-33. doi: 10.1128/IAI.06061-11. Epub 2012 Feb 21.
7
T cell targeting by anthrax toxins: two faces of the same coin.
Toxins (Basel). 2011 Jun;3(6):660-71. doi: 10.3390/toxins3060660. Epub 2011 Jun 20.
8
The effects of anthrax lethal toxin on host barrier function.
Toxins (Basel). 2011 Jun;3(6):591-607. doi: 10.3390/toxins3060591. Epub 2011 Jun 14.
10
Gram-positive bacterial superantigen outside-in signaling causes toxic shock syndrome.
FEBS J. 2011 Dec;278(23):4649-67. doi: 10.1111/j.1742-4658.2011.08151.x. Epub 2011 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验