Suppr超能文献

基于Medipix的光谱显微CT

Medipix-based Spectral Micro-CT.

作者信息

Yu Hengyong, Xu Qiong, He Peng, Bennett James, Amir Raja, Dobbs Bruce, Mou Xuanqin, Wei Biao, Butler Anthony, Butler Phillip, Wang Ge

机构信息

Department of Radiology, Division of Radiologic Sciences, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA ; Biomedical Imaging Division, VT-WFU School of Biomedical Engineering and Sciences, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA ; Biomedical Imaging Division, VT-WFU School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA.

出版信息

CT Li Lun Yu Ying Yong Yan Jiu. 2012 Dec;21(4):583.

Abstract

Since Hounsfield's Nobel Prize winning breakthrough decades ago, X-ray CT has been widely applied in the clinical and preclinical applications - producing a huge number of tomographic gray-scale images. However, these images are often insufficient to distinguish crucial differences needed for diagnosis. They have poor soft tissue contrast due to inherent photon-count issues, involving high radiation dose. By physics, the X-ray spectrum is polychromatic, and it is now feasible to obtain multi-energy, spectral, or true-color, CT images. Such spectral images promise powerful new diagnostic information. The emerging Medipix technology promises energy-sensitive, high-resolution, accurate and rapid X-ray detection. In this paper, we will review the recent progress of Medipix-based spectral micro-CT with the emphasis on the results obtained by our team. It includes the state- of-the-art Medipix detector, the system and method of a commercial MARS (Medipix All Resolution System) spectral micro-CT, and the design and color diffusion of a hybrid spectral micro-CT.

摘要

自几十年前亨斯菲尔德获得诺贝尔奖的突破性成果以来,X射线计算机断层扫描(X-ray CT)已广泛应用于临床和临床前应用——生成了大量断层灰度图像。然而,这些图像往往不足以区分诊断所需的关键差异。由于固有的光子计数问题,它们的软组织对比度较差,且辐射剂量较高。从物理学角度来看,X射线光谱是多色的,现在获取多能量、光谱或真彩色CT图像已成为可能。这种光谱图像有望提供强大的新诊断信息。新兴的Medipix技术有望实现能量敏感、高分辨率、准确且快速的X射线检测。在本文中,我们将回顾基于Medipix的光谱显微CT的最新进展,重点介绍我们团队取得的成果。它包括最先进的Medipix探测器、商用MARS(Medipix全分辨率系统)光谱显微CT的系统和方法,以及混合光谱显微CT的设计和颜色扩散。

相似文献

1
Medipix-based Spectral Micro-CT.
CT Li Lun Yu Ying Yong Yan Jiu. 2012 Dec;21(4):583.
2
Preliminary experimental results from a MARS Micro-CT system.
J Xray Sci Technol. 2012;20(2):199-211. doi: 10.3233/XST-2012-0329.
3
Energy-discriminative performance of a spectral micro-CT system.
J Xray Sci Technol. 2013;21(3):335-45. doi: 10.3233/XST-130382.
4
Image reconstruction for hybrid true-color micro-CT.
IEEE Trans Biomed Eng. 2012 Jun;59(6):1711-9. doi: 10.1109/TBME.2012.2192119. Epub 2012 Apr 3.
5
Quantitative imaging performance of MARS spectral photon-counting CT for radiotherapy.
Med Phys. 2020 Aug;47(8):3423-3434. doi: 10.1002/mp.14204. Epub 2020 Jun 4.
6
Beam profile assessment in spectral CT scanners.
J Appl Clin Med Phys. 2018 Mar;19(2):287-297. doi: 10.1002/acm2.12260. Epub 2018 Feb 7.
8
Medipix 2 detector applied to low energy electron microscopy.
Ultramicroscopy. 2009 Dec;110(1):33-5. doi: 10.1016/j.ultramic.2009.09.002. Epub 2009 Sep 17.
9
A neural network-based method for spectral distortion correction in photon counting x-ray CT.
Phys Med Biol. 2016 Aug 21;61(16):6132-53. doi: 10.1088/0031-9155/61/16/6132. Epub 2016 Jul 29.
10
Evaluation of a photon counting Medipix3RX cadmium zinc telluride spectral x-ray detector.
J Med Imaging (Bellingham). 2018 Oct;5(4):043503. doi: 10.1117/1.JMI.5.4.043503. Epub 2018 Dec 4.

引用本文的文献

2
Micro-CT of rodents: state-of-the-art and future perspectives.
Phys Med. 2014 Sep;30(6):619-34. doi: 10.1016/j.ejmp.2014.05.011. Epub 2014 Jun 26.

本文引用的文献

1
Energy-discriminative performance of a spectral micro-CT system.
J Xray Sci Technol. 2013;21(3):335-45. doi: 10.3233/XST-130382.
2
Preliminary experimental results from a MARS Micro-CT system.
J Xray Sci Technol. 2012;20(2):199-211. doi: 10.3233/XST-2012-0329.
3
Image reconstruction for hybrid true-color micro-CT.
IEEE Trans Biomed Eng. 2012 Jun;59(6):1711-9. doi: 10.1109/TBME.2012.2192119. Epub 2012 Apr 3.
4
Statistical interior tomography.
IEEE Trans Med Imaging. 2011 May;30(5):1116-28. doi: 10.1109/TMI.2011.2106161. Epub 2011 Jan 13.
5
Full-spectrum CT reconstruction using a weighted least squares algorithm with an energy-axis penalty.
IEEE Trans Med Imaging. 2011 Feb;30(2):173-83. doi: 10.1109/TMI.2010.2048120. Epub 2010 Apr 19.
6
Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE.
Eur Radiol. 2010 Sep;20(9):2126-34. doi: 10.1007/s00330-010-1768-9. Epub 2010 Mar 23.
7
Photon-counting spectral computed tomography using silicon strip detectors: a feasibility study.
Phys Med Biol. 2010 Apr 7;55(7):1999-2022. doi: 10.1088/0031-9155/55/7/014. Epub 2010 Mar 19.
8
Calculation of modulation transfer functions of x-ray fluorescent screens.
Appl Opt. 1973 Aug 1;12(8):1865-70. doi: 10.1364/AO.12.001865.
10
Recent advances in BazookaSPECT: Real-time data processing and the development of a gamma-ray microscope.
Nucl Instrum Methods Phys Res A. 2008 Jun 11;591(1):272-275. doi: 10.1016/j.nima.2008.03.072.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验