文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

抗体偶联的双模式近红外荧光氧化铁纳米颗粒,用于抗淀粉样变性活性和淀粉样β纤维的特异性检测。

Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-β fibrils.

机构信息

Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat-Gan, Israel.

出版信息

Int J Nanomedicine. 2013;8:4063-76. doi: 10.2147/IJN.S52833. Epub 2013 Oct 29.


DOI:10.2147/IJN.S52833
PMID:24194640
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3814992/
Abstract

Amyloid-β (Aβ) peptide is the main fibrillar component of plaque deposits found in brains affected by Alzheimer's disease (AD) and is related to the pathogenesis of AD. Passive anti-Aβ immunotherapy has emerged as a promising approach for the therapy of AD, based on the administration of specific anti-Aβ monoclonal antibodies (aAβmAbs) to delay Aβ aggregation in the brain. However, the main disadvantage of this approach is the required readministration of the aAβmAbs at frequent intervals. There are only a few reports describing in vitro study for the immobilization of aAβmAbs to nanoparticles as potential targeting agents of Aβ aggregates. In this article, we report the immobilization of the aAβmAb clone BAM10 to near-infrared fluorescent maghemite nanoparticles for the inhibition of Aβ40 fibrillation kinetics and the specific detection of Aβ40 fibrils. The BAM10-conjugated iron oxide nanoparticles were well-characterized, including their immunogold labeling and cytotoxic effect on PC-12 (pheochromocytoma cell line). Indeed, these antibody-conjugated nanoparticles significantly inhibit the Aβ40 fibrillation kinetics compared with the same concentration, or even five times higher, of the free BAM10. This inhibitory effect was confirmed by different assays such as the photo-induced crosslinking of unmodified proteins combined with sodium dodecyl sulfate- polyacrylamide gel electrophoresis. A cell viability assay also confirmed that these antibody-conjugated nanoparticles significantly reduced the Aβ40-induced cytotoxicity to PC-12 cells. Furthermore, the selective labeling of the Aβ40 fibrils with the BAM10-conjugated near-infrared fluorescent iron oxide nanoparticles enabled specific detection of Aβ40 fibrils ex vivo by both magnetic resonance imaging and fluorescence imaging. This study highlights the immobilization of the aAβmAb to dual-modal nanoparticles as a potential approach for aAβmAb delivery, eliminating the issue of readministration, and contributes to the development of multifunctional agents for diagnosis and therapy of AD.

摘要

淀粉样蛋白-β(Aβ)肽是受阿尔茨海默病(AD)影响的大脑中斑块沉积物的主要纤维成分,与 AD 的发病机制有关。基于向大脑中给予特定的抗 Aβ 单克隆抗体(aAβmAbs)以延迟 Aβ 聚集,被动抗 Aβ 免疫疗法已成为 AD 治疗的一种有前途的方法。然而,这种方法的主要缺点是需要频繁间隔重新给予 aAβmAbs。仅有少数报道描述了将 aAβmAb 固定到纳米颗粒上作为 Aβ 聚集物的潜在靶向剂的体外研究。在本文中,我们报告了将 aAβmAb 克隆 BAM10 固定到近红外荧光磁赤铁矿纳米颗粒上,以抑制 Aβ40 纤丝形成动力学并特异性检测 Aβ40 纤丝。BAM10 缀合的氧化铁纳米颗粒得到了很好的表征,包括其免疫金标记和对 PC-12(嗜铬细胞瘤细胞系)的细胞毒性作用。实际上,与相同浓度甚至五倍更高浓度的游离 BAM10 相比,这些抗体缀合的纳米颗粒可显著抑制 Aβ40 纤丝形成动力学。这种抑制作用通过不同的测定方法得到了证实,例如未修饰蛋白质的光诱导交联与十二烷基硫酸钠-聚丙烯酰胺凝胶电泳相结合。细胞活力测定也证实了这些抗体缀合的纳米颗粒可显著降低 Aβ40 对 PC-12 细胞的细胞毒性。此外,BAM10 缀合的近红外荧光氧化铁纳米颗粒对 Aβ40 纤丝的选择性标记使 Aβ40 纤丝的特异性检测能够通过磁共振成像和荧光成像在体外进行。这项研究强调了将 aAβmAb 固定到双模态纳米颗粒上作为 aAβmAb 传递的一种潜在方法,消除了重新给药的问题,并为 AD 的诊断和治疗的多功能试剂的开发做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/8892a927d50c/ijn-8-4063Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/c9ccc21dced4/ijn-8-4063Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/59e6fdc490ba/ijn-8-4063Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/60fb2514a770/ijn-8-4063Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/afb9a9f039d7/ijn-8-4063Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/9860bcc5bf99/ijn-8-4063Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/e13707537590/ijn-8-4063Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/cb11ec1a6a34/ijn-8-4063Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/765405b430b4/ijn-8-4063Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/bcc0bc171fa8/ijn-8-4063Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/8892a927d50c/ijn-8-4063Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/c9ccc21dced4/ijn-8-4063Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/59e6fdc490ba/ijn-8-4063Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/60fb2514a770/ijn-8-4063Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/afb9a9f039d7/ijn-8-4063Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/9860bcc5bf99/ijn-8-4063Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/e13707537590/ijn-8-4063Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/cb11ec1a6a34/ijn-8-4063Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/765405b430b4/ijn-8-4063Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/bcc0bc171fa8/ijn-8-4063Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd37/3814992/8892a927d50c/ijn-8-4063Fig10.jpg

相似文献

[1]
Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-β fibrils.

Int J Nanomedicine. 2013-10-29

[2]
Dual-Modal NIR-Fluorophore Conjugated Magnetic Nanoparticle for Imaging Amyloid-β Species In Vivo.

Small. 2018-6-7

[3]
CLVFFA-Functionalized Gold Nanoclusters Inhibit Aβ40 Fibrillation, Fibrils' Prolongation, and Mature Fibrils' Disaggregation.

ACS Chem Neurosci. 2019-11-4

[4]
Dimeric bis (heptyl)-Cognitin Blocks Alzheimer's β-Amyloid Neurotoxicity Via the Inhibition of Aβ Fibrils Formation and Disaggregation of Preformed Fibrils.

CNS Neurosci Ther. 2015-12

[5]
Alzheimer's disease amyloid β-protein mutations and deletions that define neuronal binding/internalization as early stage nonfibrillar/fibrillar aggregates and late stage fibrils.

Biochemistry. 2012-5-7

[6]
Cross-Seeded Fibrillation Induced by Pyroglutamate-3 and Truncated Aβ Variants Leads to Aβ Structural Polymorphism Modulation and Elevated Toxicity.

ACS Chem Neurosci. 2021-10-6

[7]
Amyloid binding ligands as Alzheimer's disease therapies.

Neurobiol Aging. 2002

[8]
Protease inhibitor coinfusion with amyloid beta-protein results in enhanced deposition and toxicity in rat brain.

J Neurosci. 1998-10-15

[9]
Near-Infrared Photothermally Enhanced Photo-Oxygenation for Inhibition of Amyloid-β Aggregation Based on RVG-Conjugated Porphyrinic Metal-Organic Framework and Indocyanine Green Nanoplatform.

Int J Mol Sci. 2022-9-17

[10]
Surface plasmon resonance binding kinetics of Alzheimer's disease amyloid beta peptide-capturing and plaque-binding monoclonal antibodies.

Biochemistry. 2009-11-3

引用本文的文献

[1]
Machine learning assisted-nanomedicine using magnetic nanoparticles for central nervous system diseases.

Nanoscale Adv. 2023-7-28

[2]
Molecular Design of Magnetic Resonance Imaging Agents Binding to Amyloid Deposits.

Int J Mol Sci. 2023-7-6

[3]
Recent Advances in the Treatment of Alzheimer's Disease Using Nanoparticle-Based Drug Delivery Systems.

Pharmaceutics. 2022-4-11

[4]
Nanomaterials for Modulating the Aggregation of β-Amyloid Peptides.

Molecules. 2021-7-15

[5]
The Antiaggregative and Antiamyloidogenic Properties of Nanoparticles: A Promising Tool for the Treatment and Diagnostics of Neurodegenerative Diseases.

Oxid Med Cell Longev. 2020

[6]
Application of Iron Oxide Nanoparticles in the Diagnosis and Treatment of Neurodegenerative Diseases With Emphasis on Alzheimer's Disease.

Front Cell Neurosci. 2020-2-28

[7]
The Delivery Challenge in Neurodegenerative Disorders: The Nanoparticles Role in Alzheimer's Disease Therapeutics and Diagnostics.

Pharmaceutics. 2018-10-17

[8]
Magnetic Nanoparticles Applications for Amyloidosis Study and Detection: A Review.

Nanomaterials (Basel). 2018-9-18

[9]
Nanotechnology Based Theranostic Approaches in Alzheimer's Disease Management: Current Status and Future Perspective.

Curr Alzheimer Res. 2017

[10]
Nanomaterial applications in multiple sclerosis inflamed brain.

J Neuroimmune Pharmacol. 2015-1-24

本文引用的文献

[1]
Near-Infrared Fluorescent Nanoprobes for in Vivo Optical Imaging.

Nanomaterials (Basel). 2012-3-30

[2]
Neurodegenerative Diseases: Multifactorial Conformational Diseases and Their Therapeutic Interventions.

J Neurodegener Dis. 2013

[3]
Passive anti-amyloid immunotherapy in Alzheimer's disease: What are the most promising targets?

Immun Ageing. 2013-5-11

[4]
Glyconanoparticle aided detection of β-amyloid by magnetic resonance imaging and attenuation of β-amyloid induced cytotoxicity.

ACS Chem Neurosci. 2013-1-16

[5]
Developing therapeutic antibodies for neurodegenerative disease.

Neurotherapeutics. 2013-7

[6]
Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution.

ACS Chem Neurosci. 2013-1-23

[7]
Detection of amyloid plaques targeted by bifunctional USPIO in Alzheimer's disease transgenic mice using magnetic resonance microimaging.

PLoS One. 2013-2-27

[8]
Protein fibrillation and nanoparticle interactions: opportunities and challenges.

Nanoscale. 2013-4-7

[9]
Passive immunotherapy for Alzheimer's disease: what have we learned, and where are we headed?

J Nutr Health Aging. 2013-1

[10]
Current and future treatments for Alzheimer's disease.

Ther Adv Neurol Disord. 2013-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索