Suppr超能文献

PSI:一种用于准确预测植物亚细胞定位的全面综合方法。

PSI: a comprehensive and integrative approach for accurate plant subcellular localization prediction.

作者信息

Liu Lili, Zhang Zijun, Mei Qian, Chen Ming

机构信息

College of Life Sciences, Zhejiang University, Hangzhou, China.

出版信息

PLoS One. 2013 Oct 23;8(10):e75826. doi: 10.1371/journal.pone.0075826. eCollection 2013.

Abstract

Predicting the subcellular localization of proteins conquers the major drawbacks of high-throughput localization experiments that are costly and time-consuming. However, current subcellular localization predictors are limited in scope and accuracy. In particular, most predictors perform well on certain locations or with certain data sets while poorly on others. Here, we present PSI, a novel high accuracy web server for plant subcellular localization prediction. PSI derives the wisdom of multiple specialized predictors via a joint-approach of group decision making strategy and machine learning methods to give an integrated best result. The overall accuracy obtained (up to 93.4%) was higher than best individual (CELLO) by ~10.7%. The precision of each predicable subcellular location (more than 80%) far exceeds that of the individual predictors. It can also deal with multi-localization proteins. PSI is expected to be a powerful tool in protein location engineering as well as in plant sciences, while the strategy employed could be applied to other integrative problems. A user-friendly web server, PSI, has been developed for free access at http://bis.zju.edu.cn/psi/.

摘要

预测蛋白质的亚细胞定位克服了高通量定位实验成本高且耗时的主要缺点。然而,目前的亚细胞定位预测器在范围和准确性方面存在局限性。特别是,大多数预测器在某些位置或某些数据集上表现良好,而在其他位置或数据集上表现不佳。在此,我们展示了PSI,一种用于植物亚细胞定位预测的新型高精度网络服务器。PSI通过群体决策策略和机器学习方法的联合方法,汲取了多个专业预测器的智慧,以给出综合的最佳结果。所获得的总体准确率(高达93.4%)比最佳个体预测器(CELLO)高出约10.7%。每个可预测亚细胞位置的精度(超过80%)远远超过个体预测器。它还可以处理多定位蛋白。PSI有望成为蛋白质定位工程以及植物科学中的强大工具,而所采用的策略可应用于其他综合问题。已开发出一个用户友好的网络服务器PSI,可在http://bis.zju.edu.cn/psi/免费访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f4a/3806775/32922dc480b9/pone.0075826.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验