Badesa Francisco J, Morales Ricardo, Garcia-Aracil Nicolas, Sabater J M, Casals Alicia, Zollo Loredana
Virtual Reality and Robotics Lab, Biomedical Neuroengineering Universidad Miguel Hernandez de Elche, 03202 Elche, Alicante, Spain(1).
Institute for Bioengineering of Catalonia and Universitat Politecnica de Catalunya, BarcelonaTech, Spain(2).
Comput Methods Programs Biomed. 2014 Sep;116(2):123-30. doi: 10.1016/j.cmpb.2013.09.011. Epub 2013 Sep 23.
This paper presents an application of a classification method to adaptively and dynamically modify the therapy and real-time displays of a virtual reality system in accordance with the specific state of each patient using his/her physiological reactions. First, a theoretical background about several machine learning techniques for classification is presented. Then, nine machine learning techniques are compared in order to select the best candidate in terms of accuracy. Finally, first experimental results are presented to show that the therapy can be modulated in function of the patient state using machine learning classification techniques.
本文介绍了一种分类方法的应用,该方法可根据每位患者的生理反应,针对其特定状态自适应地、动态地修改虚拟现实系统的治疗方案及实时显示。首先,介绍了几种用于分类的机器学习技术的理论背景。然后,对九种机器学习技术进行比较,以便在准确性方面选出最佳候选技术。最后,给出了初步实验结果,以表明可使用机器学习分类技术根据患者状态调整治疗方案。