VA Salt Lake City Health Care System, Salt Lake City, Utah, USA.
J Am Med Inform Assoc. 2014 Feb;21(e1):e163-8. doi: 10.1136/amiajnl-2013-001859. Epub 2013 Nov 7.
Binge eating disorder (BED) does not have an International Classification of Diseases, 9th or 10th edition code, but is included under 'eating disorder not otherwise specified' (EDNOS). This historical cohort study identified patients with clinician-diagnosed BED from electronic health records (EHR) in the Department of Veterans Affairs between 2000 and 2011 using natural language processing (NLP) and compared their characteristics to patients identified by EDNOS diagnosis codes. NLP identified 1487 BED patients with classification accuracy of 91.8% and sensitivity of 96.2% compared to human review. After applying study inclusion criteria, 525 patients had NLP-identified BED only, 1354 had EDNOS only, and 68 had both BED and EDNOS. Patient characteristics were similar between the groups. This is the first study to use NLP as a method to identify BED patients from EHR data and will allow further epidemiological study of patients with BED in systems with adequate clinical notes.
暴食障碍(BED)没有国际疾病分类第 9 或 10 版的编码,但被归入“未特定的饮食障碍”(EDNOS)。这项回顾性队列研究使用自然语言处理(NLP)从退伍军人事务部的电子健康记录(EHR)中确定了 2000 年至 2011 年间临床诊断为 BED 的患者,并将他们的特征与通过 EDNOS 诊断代码确定的患者进行了比较。与人工审查相比,NLP 识别出 1487 名 BED 患者,准确率为 91.8%,灵敏度为 96.2%。在应用研究纳入标准后,525 名患者仅通过 NLP 确定为 BED,1354 名患者仅通过 EDNOS 确定为 EDNOS,68 名患者同时患有 BED 和 EDNOS。各组患者的特征相似。这是第一项使用 NLP 从 EHR 数据中识别 BED 患者的研究,将允许在有足够临床记录的系统中对 BED 患者进行进一步的流行病学研究。