Suppr超能文献

棘突处理神经回路的功能鉴定

Functional identification of spike-processing neural circuits.

作者信息

Lazar Aurel A, Slutskiy Yevgeniy B

机构信息

Department of Electrical Engineering, Columbia University, New York, NY 10027, U.S.A.

出版信息

Neural Comput. 2014 Feb;26(2):264-305. doi: 10.1162/NECO_a_00543. Epub 2013 Nov 8.

Abstract

We introduce a novel approach for a complete functional identification of biophysical spike-processing neural circuits. The circuits considered accept multidimensional spike trains as their input and comprise a multitude of temporal receptive fields and conductance-based models of action potential generation. Each temporal receptive field describes the spatiotemporal contribution of all synapses between any two neurons and incorporates the (passive) processing carried out by the dendritic tree. The aggregate dendritic current produced by a multitude of temporal receptive fields is encoded into a sequence of action potentials by a spike generator modeled as a nonlinear dynamical system. Our approach builds on the observation that during any experiment, an entire neural circuit, including its receptive fields and biophysical spike generators, is projected onto the space of stimuli used to identify the circuit. Employing the reproducing kernel Hilbert space (RKHS) of trigonometric polynomials to describe input stimuli, we quantitatively describe the relationship between underlying circuit parameters and their projections. We also derive experimental conditions under which these projections converge to the true parameters. In doing so, we achieve the mathematical tractability needed to characterize the biophysical spike generator and identify the multitude of receptive fields. The algorithms obviate the need to repeat experiments in order to compute the neurons' rate of response, rendering our methodology of interest to both experimental and theoretical neuroscientists.

摘要

我们介绍了一种全新的方法,用于对生物物理尖峰处理神经回路进行完整的功能识别。所考虑的神经回路接受多维尖峰序列作为输入,并包含大量的时间感受野和基于电导的动作电位生成模型。每个时间感受野描述了任意两个神经元之间所有突触的时空贡献,并纳入了由树突树进行的(被动)处理。由大量时间感受野产生的总树突电流由一个建模为非线性动力系统的尖峰发生器编码为一系列动作电位。我们的方法基于这样的观察:在任何实验中,整个神经回路,包括其感受野和生物物理尖峰发生器,都被投影到用于识别该回路的刺激空间上。利用三角多项式的再生核希尔伯特空间(RKHS)来描述输入刺激,我们定量地描述了潜在回路参数与其投影之间的关系。我们还推导了这些投影收敛到真实参数的实验条件。通过这样做,我们实现了表征生物物理尖峰发生器和识别大量感受野所需的数学易处理性。这些算法无需重复实验来计算神经元的反应速率,这使得我们的方法对实验神经科学家和理论神经科学家都具有吸引力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验