Lazar Aurel A, Slutskiy Yevgeniy B
Bionet Group, Department of Electrical Engineering, Columbia University in the City of New York New York, NY, USA.
Front Comput Neurosci. 2014 Sep 26;8:117. doi: 10.3389/fncom.2014.00117. eCollection 2014.
We present algorithms for identifying multidimensional receptive fields directly from spike trains produced by biophysically-grounded neuron models. We demonstrate that only the projection of a receptive field onto the input stimulus space may be perfectly identified and derive conditions under which this identification is possible. We also provide detailed examples of identification of neural circuits incorporating spatiotemporal and spectrotemporal receptive fields.
我们提出了直接从基于生物物理的神经元模型产生的尖峰序列中识别多维感受野的算法。我们证明,只有感受野在输入刺激空间上的投影可以被完美识别,并推导出这种识别可能的条件。我们还提供了包含时空和光谱-时间感受野的神经回路识别的详细示例。