Suppr超能文献

具有固有噪声源的 Volterra 树突状刺激处理器和生物物理尖峰发生器。

Volterra dendritic stimulus processors and biophysical spike generators with intrinsic noise sources.

机构信息

Department of Electrical Engineering, Columbia University New York, NY, USA.

出版信息

Front Comput Neurosci. 2014 Sep 1;8:95. doi: 10.3389/fncom.2014.00095. eCollection 2014.

Abstract

We consider a class of neural circuit models with internal noise sources arising in sensory systems. The basic neuron model in these circuits consists of a dendritic stimulus processor (DSP) cascaded with a biophysical spike generator (BSG). The dendritic stimulus processor is modeled as a set of nonlinear operators that are assumed to have a Volterra series representation. Biophysical point neuron models, such as the Hodgkin-Huxley neuron, are used to model the spike generator. We address the question of how intrinsic noise sources affect the precision in encoding and decoding of sensory stimuli and the functional identification of its sensory circuits. We investigate two intrinsic noise sources arising (i) in the active dendritic trees underlying the DSPs, and (ii) in the ion channels of the BSGs. Noise in dendritic stimulus processing arises from a combined effect of variability in synaptic transmission and dendritic interactions. Channel noise arises in the BSGs due to the fluctuation of the number of the active ion channels. Using a stochastic differential equations formalism we show that encoding with a neuron model consisting of a nonlinear DSP cascaded with a BSG with intrinsic noise sources can be treated as generalized sampling with noisy measurements. For single-input multi-output neural circuit models with feedforward, feedback and cross-feedback DSPs cascaded with BSGs we theoretically analyze the effect of noise sources on stimulus decoding. Building on a key duality property, the effect of noise parameters on the precision of the functional identification of the complete neural circuit with DSP/BSG neuron models is given. We demonstrate through extensive simulations the effects of noise on encoding stimuli with circuits that include neuron models that are akin to those commonly seen in sensory systems, e.g., complex cells in V1.

摘要

我们考虑一类具有源自感觉系统的内部噪声源的神经电路模型。这些电路中的基本神经元模型由一个树突刺激处理器 (DSP) 与一个生物物理尖峰发生器 (BSG) 级联而成。树突刺激处理器被建模为一组非线性算子,假设它们具有 Volterra 级数表示。生物物理点神经元模型,如 Hodgkin-Huxley 神经元,用于模拟尖峰发生器。我们解决了内在噪声源如何影响感觉刺激的编码和解码精度以及其感觉电路的功能识别的问题。我们研究了两种内在噪声源,它们分别源自 (i) 构成 DSP 的主动树突中的噪声,以及 (ii) BSG 中的离子通道中的噪声。树突刺激处理中的噪声源自突触传递和树突相互作用的变异性的综合影响。BSG 中的通道噪声是由于活跃离子通道数量的波动而产生的。使用随机微分方程形式,我们表明,由非线性 DSP 与具有内在噪声源的 BSG 级联的神经元模型进行编码可以被视为具有噪声测量的广义采样。对于具有前馈、反馈和交叉反馈 DSP 与 BSG 级联的单输入多输出神经电路模型,我们从理论上分析了噪声源对刺激解码的影响。基于一个关键对偶性质,给出了噪声参数对具有 DSP/BSG 神经元模型的完整神经电路功能识别精度的影响。我们通过广泛的模拟演示了噪声对包括类似于常见于感觉系统的神经元模型(例如 V1 中的复杂细胞)的电路的编码刺激的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a2f/4150400/97fe59ba4008/fncom-08-00095-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验