Suppr超能文献

识别记忆的全局匹配模型:模型如何匹配数据。

Global matching models of recognition memory: How the models match the data.

机构信息

Psychology Department, University of California, 92521, Riverside, CA,

出版信息

Psychon Bull Rev. 1996 Mar;3(1):37-60. doi: 10.3758/BF03210740.

Abstract

We present a review of global matching models of recognition memory, describing their theoretical origins and fundamental assumptions, focusing on two defining properties: (1) recognition is based solely on familiarity due to a match of test items to memory at a global level, and (2) multiple cues are combined interactively. We evaluate the models against relevant data bearing on issues including the representation of associative information, differences in verbal and environmental context effects, list-length, list-strength, and global similarity effects, and ROC functions. Two main modifications to the models are discussed: one based on the representation of associative information, and the other based on the addition of recall-like retrieval mechanisms.

摘要

我们呈现了一个关于识别记忆的全局匹配模型的综述,描述了它们的理论起源和基本假设,重点关注两个定义性的特征:(1)识别仅基于熟悉度,因为测试项目与记忆在全局水平上匹配;(2)多个线索是交互地组合的。我们根据与以下问题相关的数据来评估这些模型:包括联想信息的表示、言语和环境语境效应的差异、项目长度、项目强度、全局相似性效应以及 ROC 函数。我们讨论了对模型的两个主要修改:一个基于联想信息的表示,另一个基于添加类似回忆的检索机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验