Suppr超能文献

Using dynamic contrast-enhanced magnetic resonance imaging data to constrain a positron emission tomography kinetic model: theory and simulations.

作者信息

Fluckiger Jacob U, Li Xia, Whisenant Jennifer G, Peterson Todd E, Gore John C, Yankeelov Thomas E

机构信息

Department of Radiology, Northwestern University, Chicago, IL 60611, USA.

出版信息

Int J Biomed Imaging. 2013;2013:576470. doi: 10.1155/2013/576470. Epub 2013 Oct 3.

Abstract

We show how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data can constrain a compartmental model for analyzing dynamic positron emission tomography (PET) data. We first develop the theory that enables the use of DCE-MRI data to separate whole tissue time activity curves (TACs) available from dynamic PET data into individual TACs associated with the blood space, the extravascular-extracellular space (EES), and the extravascular-intracellular space (EIS). Then we simulate whole tissue TACs over a range of physiologically relevant kinetic parameter values and show that using appropriate DCE-MRI data can separate the PET TAC into the three components with accuracy that is noise dependent. The simulations show that accurate blood, EES, and EIS TACs can be obtained as evidenced by concordance correlation coefficients >0.9 between the true and estimated TACs. Additionally, provided that the estimated DCE-MRI parameters are within 10% of their true values, the errors in the PET kinetic parameters are within approximately 20% of their true values. The parameters returned by this approach may provide new information on the transport of a tracer in a variety of dynamic PET studies.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a2e/3814089/ce2d3d38bb65/IJBI2013-576470.001.jpg

相似文献

2
Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT.
Med Phys. 2011 Aug;38(8):4866-80. doi: 10.1118/1.3615058.
4
Comparison of DCE-MRI kinetic parameters and FMISO-PET uptake parameters in head and neck cancer patients.
Med Phys. 2017 Jun;44(6):2358-2368. doi: 10.1002/mp.12228. Epub 2017 Apr 20.
8
Comparison of tumor histology to dynamic contrast enhanced magnetic resonance imaging-based physiological estimates.
Magn Reson Imaging. 2008 Nov;26(9):1279-93. doi: 10.1016/j.mri.2008.02.015. Epub 2008 May 19.

引用本文的文献

本文引用的文献

1
Assessing the reproducibility of dynamic contrast enhanced magnetic resonance imaging in a murine model of breast cancer.
Magn Reson Med. 2013 Jun;69(6):1721-34. doi: 10.1002/mrm.24422. Epub 2012 Jul 27.
2
Simultaneous PET-MRI in oncology: a solution looking for a problem?
Magn Reson Imaging. 2012 Nov;30(9):1342-56. doi: 10.1016/j.mri.2012.06.001. Epub 2012 Jul 15.
3
Toward local arterial input functions in dynamic contrast-enhanced MRI.
J Magn Reson Imaging. 2010 Oct;32(4):924-34. doi: 10.1002/jmri.22339.
4
PET/CT in cancer research: from preclinical to clinical applications.
Contrast Media Mol Imaging. 2010 Jul-Aug;5(4):190-200. doi: 10.1002/cmmi.368.
5
Multimodality imaging techniques.
Contrast Media Mol Imaging. 2010 Jul-Aug;5(4):180-9. doi: 10.1002/cmmi.393.
6
A review on the clinical uses of SPECT/CT.
Eur J Nucl Med Mol Imaging. 2010 Oct;37(10):1959-85. doi: 10.1007/s00259-010-1390-8. Epub 2010 Feb 25.
7
PET/MRI: paving the way for the next generation of clinical multimodality imaging applications.
J Nucl Med. 2010 Mar;51(3):333-6. doi: 10.2967/jnumed.109.061853. Epub 2010 Feb 11.
8
Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples.
Curr Med Imaging Rev. 2009 May 1;3(2):91-107. doi: 10.2174/157340507780619179.
9
A clinically feasible method to estimate pharmacokinetic parameters in breast cancer.
Med Phys. 2009 Aug;36(8):3786-94. doi: 10.1118/1.3152113.
10
Evaluation of a compartmental model for estimating tumor hypoxia via FMISO dynamic PET imaging.
Phys Med Biol. 2009 May 21;54(10):3083-99. doi: 10.1088/0031-9155/54/10/008. Epub 2009 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验