Suppr超能文献

大环内酯类诱导的核糖体移码对基因表达的调控。

Regulation of gene expression by macrolide-induced ribosomal frameshifting.

机构信息

Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA.

Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA.

出版信息

Mol Cell. 2013 Dec 12;52(5):629-42. doi: 10.1016/j.molcel.2013.10.013. Epub 2013 Nov 14.

Abstract

The expression of many genes is controlled by upstream ORFs (uORFs). Typically, the progression of the ribosome through a regulatory uORF, which depends on the physiological state of the cell, influences the expression of the downstream gene. In the classic mechanism of induction of macrolide resistance genes, antibiotics promote translation arrest within the uORF, and the static ribosome induces a conformational change in mRNA, resulting in the activation of translation of the resistance cistron. We show that ketolide antibiotics, which do not induce ribosome stalling at the uORF of the ermC resistance gene, trigger its expression via a unique mechanism. Ketolides promote frameshifting at the uORF, allowing the translating ribosome to invade the intergenic spacer. The dynamic unfolding of the mRNA structure leads to the activation of resistance. Conceptually similar mechanisms may control other cellular genes. The identified property of ketolides to reduce the fidelity of reading frame maintenance may have medical implications.

摘要

许多基因的表达受到上游开放阅读框(uORFs)的控制。通常,核糖体通过依赖于细胞生理状态的调控 uORF 的前进,影响下游基因的表达。在经典的大环内酯类抗生素耐药基因诱导机制中,抗生素促进 uORF 内的翻译停滞,而静态核糖体诱导 mRNA 构象变化,从而激活耐药顺式的翻译。我们表明,酮内酯类抗生素不会诱导 ermC 耐药基因 uORF 中的核糖体停滞,而是通过独特的机制触发其表达。酮内酯类药物促进 uORF 移码,使翻译核糖体侵入基因间间隔区。mRNA 结构的动态解折叠导致耐药性的激活。类似的概念机制可能控制其他细胞基因。已确定的酮内酯降低阅读框维持保真度的特性可能具有医学意义。

相似文献

5
Induction of erm(C) expression by noninducing antibiotics.非诱导性抗生素诱导erm(C)表达
Antimicrob Agents Chemother. 2008 Mar;52(3):866-74. doi: 10.1128/AAC.01266-07. Epub 2007 Dec 17.
7
The energy landscape of -1 ribosomal frameshifting.-1 核糖体移码的能量景观。
Sci Adv. 2020 Jan 1;6(1):eaax6969. doi: 10.1126/sciadv.aax6969. eCollection 2020 Jan.
9
Ribosome regulation by the nascent peptide.新生肽对核糖体的调控
Microbiol Rev. 1996 Jun;60(2):366-85. doi: 10.1128/mr.60.2.366-385.1996.
10
Programmed drug-dependent ribosome stalling.程序性药物依赖性核糖体停滞
Mol Microbiol. 2009 Feb;71(4):811-24. doi: 10.1111/j.1365-2958.2008.06576.x. Epub 2008 Nov 30.

引用本文的文献

1
Nanomotion technology for testing azithromycin susceptibility of .用于检测……阿奇霉素敏感性的纳米运动技术
Microbiol Spectr. 2025 Jun 3;13(6):e0238524. doi: 10.1128/spectrum.02385-24. Epub 2025 Apr 24.
7
Tetracenomycin X sequesters peptidyl-tRNA during translation of QK motifs.四烯霉素 X 在翻译 QK 基序时螯合肽酰-tRNA。
Nat Chem Biol. 2023 Sep;19(9):1091-1096. doi: 10.1038/s41589-023-01343-0. Epub 2023 Jun 15.
8
Nontriplet feature of genetic code in ciliates is a result of neutral evolution.纤毛虫遗传密码的非同三联体特征是中性进化的结果。
Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2221683120. doi: 10.1073/pnas.2221683120. Epub 2023 May 22.

本文引用的文献

3
Control of gene expression by translational recoding.通过翻译重编码控制基因表达。
Adv Protein Chem Struct Biol. 2012;86:129-49. doi: 10.1016/B978-0-12-386497-0.00004-9.
5
Role of antibiotic ligand in nascent peptide-dependent ribosome stalling.抗生素配体在新生肽依赖性核糖体停滞中的作用。
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10496-501. doi: 10.1073/pnas.1103474108. Epub 2011 Jun 13.
6
An expanding universe of small proteins.小分子蛋白的不断扩展的领域。
Curr Opin Microbiol. 2011 Apr;14(2):167-73. doi: 10.1016/j.mib.2011.01.007. Epub 2011 Feb 20.
9
Structural signatures of antibiotic binding sites on the ribosome.核糖体上抗生素结合位点的结构特征。
Nucleic Acids Res. 2010 Oct;38(18):5982-94. doi: 10.1093/nar/gkq411. Epub 2010 May 21.
10
Divergent stalling sequences sense and control cellular physiology.分歧的失速序列感知和控制细胞生理学。
Biochem Biophys Res Commun. 2010 Feb 26;393(1):1-5. doi: 10.1016/j.bbrc.2010.01.073. Epub 2010 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验