Suppr超能文献

估算传染病干预措施的每暴露效应。

Estimating the per-exposure effect of infectious disease interventions.

机构信息

From the aDepartment of Epidemiology, Harvard School of Public Health, Boston, MA; bCenter for Communicable Disease Dynamics, Harvard School of Public Health, Boston, MA; and cDepartment of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA.

出版信息

Epidemiology. 2014 Jan;25(1):134-8. doi: 10.1097/EDE.0000000000000003.

Abstract

The average effect of an infectious disease intervention (eg, a vaccine) varies across populations with different degrees of exposure to the pathogen. As a result, many investigators favor a per-exposure effect measure that is considered independent of the population level of exposure and that can be used in simulations to estimate the total disease burden averted by an intervention across different populations. However, while per-exposure effects are frequently estimated, the quantity of interest is often poorly defined, and assumptions in its calculation are typically left implicit. In this article, we build upon work by Halloran and Struchiner (Epidemiology. 1995;6:142-151) to develop a formal definition of the per-exposure effect and discuss conditions necessary for its unbiased estimation. With greater care paid to the parameterization of transmission models, their results can be better understood and can thereby be of greater value to decision-makers.

摘要

传染病干预(例如疫苗)的平均效果因病原体暴露程度不同而在不同人群中存在差异。因此,许多研究人员倾向于采用一种基于暴露次数的效应测量方法,这种方法被认为与人群的暴露水平无关,并且可以在模拟中用于估计干预措施在不同人群中避免的总疾病负担。然而,尽管经常估计基于暴露次数的效应,但感兴趣的数量通常定义不明确,并且在计算中通常隐含了其假设。在本文中,我们基于 Halloran 和 Struchiner 的工作(Epidemiology. 1995;6:142-151),对基于暴露次数的效应进行了正式定义,并讨论了其无偏估计所需的条件。通过更加关注传播模型的参数化,他们的结果可以得到更好的理解,从而对决策者更有价值。

相似文献

3
When to control endemic infections by focusing on high-risk groups.
Epidemiology. 2005 Sep;16(5):621-7. doi: 10.1097/01.ede.0000172133.46385.18.
5
Rate estimation from prevalence information on a simple epidemiologic model for health interventions.
Theor Popul Biol. 1996 Dec;50(3):209-26. doi: 10.1006/tpbi.1996.0029.
7
9
Impact of committed individuals on vaccination behavior.有奉献精神的个体对疫苗接种行为的影响。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):051132. doi: 10.1103/PhysRevE.86.051132. Epub 2012 Nov 26.
10
Emerging issues in infectious disease epidemiology.传染病流行病学中的新问题。
J Chronic Dis. 1986;39(12):1105-24. doi: 10.1016/0021-9681(86)90143-8.

引用本文的文献

1
Over- and under-estimation of vaccine effectiveness.疫苗效力的高估与低估。
BMC Med Res Methodol. 2025 Jul 1;25(1):163. doi: 10.1186/s12874-025-02611-4.
4
Identification of Vaccine Effects When Exposure Status Is Unknown.当暴露状态未知时识别疫苗效果。
Epidemiology. 2023 Mar 1;34(2):216-224. doi: 10.1097/EDE.0000000000001573. Epub 2023 Jan 26.
8
Identification of causal intervention effects under contagion.传染情况下因果干预效应的识别。
J Causal Inference. 2021 Jan;9(1):9-38. doi: 10.1515/jci-2019-0033. Epub 2021 Apr 5.
9

本文引用的文献

2
A note on the derivation of epidemic final sizes.关于流行病最终规模的推导的注释。
Bull Math Biol. 2012 Sep;74(9):2125-41. doi: 10.1007/s11538-012-9749-6. Epub 2012 Jul 25.
5
How to make epidemiological training infectious.如何让流行病学培训具有感染力。
PLoS Biol. 2012;10(4):e1001295. doi: 10.1371/journal.pbio.1001295. Epub 2012 Apr 3.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验