Suppr超能文献

分析在疫情期间开展的3期临床试验中评估的疫苗效力。

Analysing vaccine efficacy evaluated in phase 3 clinical trials carried out during outbreaks.

作者信息

Coutinho Francisco Antonio Bezerra, Amaku Marcos, Boulos Fernanda Castro, de Sousa Moreira José Alfredo, Dias Franca João Italo, do Amaral Julio Antonio, de Barros Eliana Nogueira Castro, Struchiner Claudio José, Kallas Esper Jorge, Massad Eduardo

机构信息

School of Medicine, University of Sao Paulo, Brazil.

School of Applied Mathematics, Fundacao Getulio Vargas, Rio de Janeiro, Brazil.

出版信息

Infect Dis Model. 2024 May 23;9(4):1027-1044. doi: 10.1016/j.idm.2024.05.007. eCollection 2024 Dec.

Abstract

In this paper we examine several definitions of vaccine efficacy (VE) that we found in the literature, for diseases that express themselves in outbreaks, that is, when the force of infection grows in time, reaches a maximum and then vanishes. The fact that the disease occurs in outbreaks results in several problems that we analyse. We propose a mathematical model that allows the calculation of VE for several scenarios. Vaccine trials usually needs a large number of volunteers that must be enrolled. Ideally, all volunteers should be enrolled in approximately the same time, but this is generally impossible for logistic reasons and they are enrolled in a fashion that can be replaced by a continuous density function (for example, a Gaussian function). The outbreak can also be replaced by a continuous density function, and the use of these density functions simplifies the calculations. Assuming, for example Gaussian functions, one of the problems one can immediately notice is that the peak of the two curves do not occur at the same time. The model allows us to conclude: First, the calculated vaccine efficacy decreases when the force of infection increases; Second, the calculated vaccine efficacy decreases when the gap between the peak in the force of infection and the peak in the enrollment rate increases; Third, different trial protocols can be simulated with this model; different vaccine efficacy definitions can be calculated and in our simulations, all result are approximately the same. The final, and perhaps most important conclusion of our model, is that vaccine efficacy calculated during outbreaks must be carefully examined and the best way we can suggest to overcome this problem is to stratify the enrolled volunteer's in a cohort-by-cohort basis and do the survival analysis for each cohort, or apply the Cox proportional hazards model for each cohort.

摘要

在本文中,我们研究了在文献中找到的几种疫苗效力(VE)的定义,这些定义适用于以疫情形式表现出来的疾病,即当感染强度随时间增长、达到最大值然后消失时。疾病以疫情形式出现这一事实会引发我们所分析的几个问题。我们提出了一个数学模型,该模型能够针对多种情况计算疫苗效力。疫苗试验通常需要招募大量志愿者。理想情况下,所有志愿者应在大致相同的时间招募,但由于后勤原因这通常是不可能的,他们是以一种可用连续密度函数(例如高斯函数)来替代的方式招募的。疫情也可用连续密度函数来替代,使用这些密度函数可简化计算。例如假设为高斯函数,人们能立即注意到的一个问题是两条曲线的峰值不会同时出现。该模型使我们能够得出以下结论:第一,当感染强度增加时,计算出的疫苗效力会降低;第二,当感染强度峰值与招募率峰值之间的差距增大时,计算出的疫苗效力会降低;第三,可用此模型模拟不同的试验方案;可计算不同的疫苗效力定义,并且在我们的模拟中,所有结果大致相同。我们模型的最后一个或许也是最重要的结论是,在疫情期间计算出的疫苗效力必须仔细审查,我们能建议的克服这个问题的最佳方法是按队列对招募的志愿者进行分层,并对每个队列进行生存分析,或者对每个队列应用Cox比例风险模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83d4/11222955/efffa08b4ff1/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验