Beckman Institute, and Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, Mail Code 139-74, Pasadena, California 91125, United States.
J Am Chem Soc. 2013 Dec 11;135(49):18288-91. doi: 10.1021/ja4099609. Epub 2013 Nov 26.
We show that molecular catalysts for fuel-forming reactions can be immobilized on graphitic carbon electrode surfaces via noncovalent interactions. A pyrene-appended bipyridine ligand (P) serves as the linker between each complex and the surface. Immobilization of a rhodium proton-reduction catalyst, [Cp*Rh(P)Cl]Cl (1), and a rhenium CO2-reduction catalyst, Re(P)(CO)3Cl (2), afford electrocatalytically active assemblies. X-ray photoelectron spectroscopy and electrochemistry confirm catalyst immobilization. Reduction of 1 in the presence of p-toluenesulfonic acid results in catalytic H2 production, while reduction of 2 in the presence of CO2 results in catalytic CO production.
我们展示了通过非共价相互作用可以将用于燃料形成反应的分子催化剂固定在石墨碳电极表面上。一个芘基取代的联吡啶配体(P)作为每个配合物与表面之间的连接物。将铑质子还原催化剂[Cp*Rh(P)Cl]Cl(1)和铼 CO2还原催化剂Re(P)(CO)3Cl(2)固定在电极上,得到了具有电催化活性的组装体。X 射线光电子能谱和电化学证实了催化剂的固定化。在对甲苯磺酸存在下还原 1 可导致催化 H2 生成,而在 CO2 存在下还原 2 可导致催化 CO 生成。