Suppr超能文献

数字对患者做出明智选择至关重要:一项针对不同年龄和数字能力水平的随机设计。

Numbers matter to informed patient choices: a randomized design across age and numeracy levels.

作者信息

Peters Ellen, Hart P Sol, Tusler Martin, Fraenkel Liana

机构信息

Department of Psychology, Ohio State University, Columbus, OH (EP, MT).

University of Michigan, Ann Arbor, MI (PSH)

出版信息

Med Decis Making. 2014 May;34(4):430-42. doi: 10.1177/0272989X13511705. Epub 2013 Nov 18.

Abstract

BACKGROUND

How drug adverse events (AEs) are communicated in the United States may mislead consumers and result in low adherence. Requiring written information to include numeric AE-likelihood information might lessen these effects, but providing numbers may disadvantage less skilled populations. The objective was to determine risk comprehension and willingness to use a medication when presented with numeric or nonnumeric AE-likelihood information across age, numeracy, and cholesterol-lowering drug-use groups.

METHODS

In a cross-sectional Internet survey (N = 905; American Life Panel, 15 May 2008 to 18 June 2008), respondents were presented with a hypothetical prescription medication for high cholesterol. AE likelihoods were described using 1 of 6 formats (nonnumeric: consumer medication information (CMI)-like list, risk labels; numeric: percentage, frequency, risk labels + percentage, risk labels + frequency). Main outcome measures were risk comprehension (recoded to indicate presence/absence of risk overestimation and underestimation), willingness to use the medication (7-point scale; not likely = 0, very likely = 6), and main reason for willingness (chosen from 8 predefined reasons).

RESULTS

Individuals given nonnumeric information were more likely to overestimate risk, were less willing to take the medication, and gave different reasons than those provided numeric information across numeracy and age groups (e.g., among the less numerate, 69% and 18% overestimated risks in nonnumeric and numeric formats, respectively; among the more numerate, these same proportions were 66% and 6%). Less numerate middle-aged and older adults, however, showed less influence of numeric format on willingness to take the medication. It is unclear whether differences are clinically meaningful, although some differences are large.

CONCLUSIONS

Providing numeric AE-likelihood information (compared with nonnumeric) is likely to increase risk comprehension across numeracy and age levels. Its effects on uptake and adherence of prescribed drugs should be similar across the population, except perhaps in older, less numerate individuals.

摘要

背景

在美国,药物不良事件(AE)的传达方式可能会误导消费者并导致依从性降低。要求书面信息包含不良事件发生可能性的数字信息可能会减轻这些影响,但提供数字信息可能对文化水平较低的人群不利。本研究旨在确定在不同年龄、算术能力和降胆固醇药物使用群体中,当呈现数字或非数字的不良事件发生可能性信息时,人们对风险的理解以及使用药物的意愿。

方法

在一项横断面网络调查中(N = 905;美国生活面板,2008年5月15日至2008年6月18日),向受访者展示一种治疗高胆固醇的假设处方药。不良事件发生可能性用6种格式之一进行描述(非数字格式:类似消费者用药信息(CMI)的列表、风险标签;数字格式:百分比、频率、风险标签+百分比、风险标签+频率)。主要结局指标包括风险理解(重新编码以表明是否存在风险高估和低估)、使用药物的意愿(7分制;不太可能 = 0,非常可能 = 6)以及愿意使用药物的主要原因(从8个预定义原因中选择)。

结果

与获得数字信息的人相比,获得非数字信息的个体更有可能高估风险,更不愿意服用药物,并且在算术能力和年龄组中给出的原因也不同(例如,在算术能力较低的人群中,分别有69%和18%的人在非数字和数字格式中高估了风险;在算术能力较高的人群中,这两个比例分别为66%和6%)。然而,算术能力较低的中年人和老年人,数字格式对其服用药物意愿的影响较小。虽然有些差异较大,但尚不清楚这些差异在临床上是否有意义。

结论

提供数字形式的不良事件发生可能性信息(与非数字形式相比)可能会提高不同算术能力和年龄水平人群的风险理解。除了可能在年龄较大、算术能力较低的个体中,其对处方药的接受和依从性的影响在整个人口中应该是相似的。

相似文献

4
Multiple numeric competencies: When a number is not just a number.多项数字能力:数字不只是数字。
J Pers Soc Psychol. 2015 May;108(5):802-22. doi: 10.1037/pspp0000019. Epub 2014 Oct 6.

引用本文的文献

2
Communicating Numeric Risk Information to Patients.向患者传达数字风险信息。
J Gen Intern Med. 2025 Apr 29. doi: 10.1007/s11606-025-09520-8.
6
Numeric social-media posts engage people with climate science.数字化社交媒体帖子让人们参与到气候科学之中。
PNAS Nexus. 2024 Jun 29;3(7):pgae250. doi: 10.1093/pnasnexus/pgae250. eCollection 2024 Jul.
8
Statistical Literacy in Hand and Upper-Extremity Patients.手部及上肢患者的统计素养
J Hand Surg Glob Online. 2023 Aug 25;5(6):793-798. doi: 10.1016/j.jhsg.2023.07.009. eCollection 2023 Nov.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验