Suppr超能文献

CRISPR-Cas系统对染色体的靶向作用有助于细菌基因组的可塑性。

Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria.

作者信息

Dy Ron L, Pitman Andrew R, Fineran Peter C

机构信息

Department of Microbiology and Immunology; University of Otago; Dunedin, New Zealand.

出版信息

Mob Genet Elements. 2013 Sep 1;3(5):e26831. doi: 10.4161/mge.26831. Epub 2013 Oct 25.

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated (Cas) proteins form adaptive immune systems in bacteria to combat phage and other foreign genetic elements. Typically, short spacer sequences are acquired from the invader DNA and incorporated into CRISPR arrays in the bacterial genome. Small RNAs are generated that contain these spacer sequences and enable sequence-specific destruction of the foreign nucleic acids. Occasionally, spacers are acquired from the chromosome, which instead leads to targeting of the host genome. Chromosomal targeting is highly toxic to the bacterium, providing a strong selective pressure for a variety of evolutionary routes that enable host cell survival. Mutations that inactivate the CRISPR-Cas functionality, such as within the genes, CRISPR repeat, protospacer adjacent motifs (PAM), and target sequence, mediate escape from toxicity. This self-targeting might provide some explanation for the incomplete distribution of CRISPR-Cas systems in less than half of sequenced bacterial genomes. More importantly, self-genome targeting can cause large-scale genomic alterations, including remodeling or deletion of pathogenicity islands and other non-mobile chromosomal regions. While control of horizontal gene transfer is perceived as their main function, our recent work illuminates an alternative role of CRISPR-Cas systems in causing host genomic changes and influencing bacterial evolution.

摘要

成簇规律间隔短回文重复序列(CRISPR)及其相关(Cas)蛋白在细菌中形成适应性免疫系统,以对抗噬菌体和其他外来遗传元件。通常,短间隔序列从入侵DNA获取,并整合到细菌基因组中的CRISPR阵列中。产生包含这些间隔序列的小RNA,使外来核酸能够被序列特异性破坏。偶尔,间隔序列从染色体获取,这反而导致宿主基因组被靶向。染色体靶向对细菌具有高度毒性,为多种使宿主细胞存活的进化途径提供了强大的选择压力。使CRISPR-Cas功能失活的突变,如在基因、CRISPR重复序列、原间隔相邻基序(PAM)和靶序列内的突变,介导了从毒性中的逃逸。这种自我靶向可能为CRISPR-Cas系统在不到一半的已测序细菌基因组中分布不完整提供了一些解释。更重要的是,自我基因组靶向可导致大规模基因组改变,包括致病岛和其他非移动染色体区域的重塑或缺失。虽然人们认为控制水平基因转移是它们的主要功能,但我们最近的工作揭示了CRISPR-Cas系统在引起宿主基因组变化和影响细菌进化方面的另一种作用。

相似文献

1
Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria.
Mob Genet Elements. 2013 Sep 1;3(5):e26831. doi: 10.4161/mge.26831. Epub 2013 Oct 25.
2
Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.
PLoS Genet. 2013 Apr;9(4):e1003454. doi: 10.1371/journal.pgen.1003454. Epub 2013 Apr 18.
4
CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction.
mBio. 2018 Feb 13;9(1):e02406-17. doi: 10.1128/mBio.02406-17.
5
Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
mBio. 2021 Mar 30;12(2):e03338-20. doi: 10.1128/mBio.03338-20.
6
Friendly Fire: Biological Functions and Consequences of Chromosomal Targeting by CRISPR-Cas Systems.
J Bacteriol. 2016 Apr 28;198(10):1481-6. doi: 10.1128/JB.00086-16. Print 2016 May 15.
8
The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes.
mBio. 2017 Sep 19;8(5):e01397-17. doi: 10.1128/mBio.01397-17.
10

引用本文的文献

1
A bioinformatic approach to identify confirmed and probable CRISPR-Cas systems in the - complex genomes.
Front Microbiol. 2024 Apr 9;15:1335997. doi: 10.3389/fmicb.2024.1335997. eCollection 2024.
3
Enterococcus faecalis Strains with Compromised CRISPR-Cas Defense Emerge under Antibiotic Selection for a CRISPR-Targeted Plasmid.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0012423. doi: 10.1128/aem.00124-23. Epub 2023 Jun 6.
4
Correlation between type IIIA CRISPR-Cas system and SCCmec in Staphylococcus epidermidis.
Arch Microbiol. 2021 Dec;203(10):6275-6286. doi: 10.1007/s00203-021-02595-x. Epub 2021 Oct 20.
5
CRISPR-Cas Systems and the Paradox of Self-Targeting Spacers.
Front Microbiol. 2020 Jan 22;10:3078. doi: 10.3389/fmicb.2019.03078. eCollection 2019.
6
The nuts and bolts of the Haloferax CRISPR-Cas system I-B.
RNA Biol. 2019 Apr;16(4):469-480. doi: 10.1080/15476286.2018.1460994. Epub 2018 May 21.
7
Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis.
Appl Environ Microbiol. 2018 Apr 2;84(8). doi: 10.1128/AEM.02752-17. Print 2018 Apr 15.
8
Immune loss as a driver of coexistence during host-phage coevolution.
ISME J. 2018 Feb;12(2):585-597. doi: 10.1038/ismej.2017.194. Epub 2018 Jan 12.

本文引用的文献

1
Diversity of CRISPR loci in Escherichia coli.
Microbiology (Reading). 2010 May;156(5):1351-1361. doi: 10.1099/mic.0.036046-0.
2
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system.
Nucleic Acids Res. 2013 Aug;41(15):7429-37. doi: 10.1093/nar/gkt520. Epub 2013 Jun 12.
3
Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.
PLoS Genet. 2013 Apr;9(4):e1003454. doi: 10.1371/journal.pgen.1003454. Epub 2013 Apr 18.
4
CRISPR-Cas systems and RNA-guided interference.
Wiley Interdiscip Rev RNA. 2013 May-Jun;4(3):267-78. doi: 10.1002/wrna.1159. Epub 2013 Mar 20.
5
CRISPRTarget: bioinformatic prediction and analysis of crRNA targets.
RNA Biol. 2013 May;10(5):817-27. doi: 10.4161/rna.24046. Epub 2013 Mar 14.
6
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.
Cell. 2013 Feb 28;152(5):1173-83. doi: 10.1016/j.cell.2013.02.022.
7
RNA-guided editing of bacterial genomes using CRISPR-Cas systems.
Nat Biotechnol. 2013 Mar;31(3):233-9. doi: 10.1038/nbt.2508. Epub 2013 Jan 29.
9
In vivo protein interactions and complex formation in the Pectobacterium atrosepticum subtype I-F CRISPR/Cas System.
PLoS One. 2012;7(12):e49549. doi: 10.1371/journal.pone.0049549. Epub 2012 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验