Suppr超能文献

皮质神经元网络中癫痫样同步的机制。

Mechanisms of epileptiform synchronization in cortical neuronal networks.

作者信息

Avoli M

机构信息

Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, PQ, Canada, H3A 2B4.

出版信息

Curr Med Chem. 2014;21(6):653-62. doi: 10.2174/0929867320666131119151136.

Abstract

Neuronal synchronization supports different physiological states such as cognitive functions and sleep, and it is mirrored by identifiable EEG patterns ranging from gamma to delta oscillations. However, excessive neuronal synchronization is often the hallmark of epileptic activity in both generalized and partial epileptic disorders. Here, I will review the synchronizing mechanisms involved in generating epileptiform activity in the limbic system, which is closely involved in the pathophysiogenesis of temporal lobe epilepsy (TLE). TLE is often associated to a typical pattern of brain damage known as mesial temporal sclerosis, and it is one of the most refractory adult form of partial epilepsy. This epileptic disorder can be reproduced in animals by topical or systemic injection of pilocarpine or kainic acid, or by repetitive electrical stimulation; these procedures induce an initial status epilepticus and cause 1-4 weeks later a chronic condition of recurrent limbic seizures. Remarkably, a similar, seizure-free, latent period can be identified in TLE patients who suffered an initial insult in childhood and develop partial seizures in adolescence or early adulthood. Specifically, I will focus here on the neuronal mechanisms underlying three abnormal types of neuronal synchronization seen in both TLE patients and animal models mimicking this disorder: (i) interictal spikes; (ii) high frequency oscillations (80-500 Hz); and (iii) ictal (i.e., seizure) discharges. In addition, I will discuss the relationship between interictal spikes and ictal activity as well as recent evidence suggesting that specific seizure onsets in the pilocarpine model of TLE are characterized by distinctive patterns of spiking (also termed preictal) and high frequency oscillations.

摘要

神经元同步支持不同的生理状态,如认知功能和睡眠,并且可通过从γ振荡到δ振荡等可识别的脑电图模式反映出来。然而,在全身性和局灶性癫痫疾病中,过度的神经元同步往往是癫痫活动的标志。在此,我将综述在边缘系统中产生癫痫样活动所涉及的同步机制,边缘系统与颞叶癫痫(TLE)的病理生理发生密切相关。TLE通常与一种称为内侧颞叶硬化的典型脑损伤模式相关,并且它是成人最难治疗的局灶性癫痫形式之一。这种癫痫疾病可通过局部或全身注射毛果芸香碱或 kainic 酸,或通过重复电刺激在动物中重现;这些程序会诱发初始癫痫持续状态,并在1 - 4周后导致复发性边缘叶癫痫的慢性状况。值得注意的是,在童年期遭受初始损伤并在青春期或成年早期发展为局灶性癫痫发作的TLE患者中,可以识别出类似的、无癫痫发作的潜伏期。具体而言,我将在此重点关注在TLE患者和模拟这种疾病的动物模型中所见的三种异常类型的神经元同步的潜在神经机制:(i)发作间期棘波;(ii)高频振荡(80 - 500Hz);以及(iii)发作期(即癫痫发作)放电。此外,我将讨论发作间期棘波与发作期活动之间的关系,以及最近的证据表明,TLE毛果芸香碱模型中的特定癫痫发作起始具有独特的棘波(也称为发作前)和高频振荡模式。

相似文献

1
Mechanisms of epileptiform synchronization in cortical neuronal networks.
Curr Med Chem. 2014;21(6):653-62. doi: 10.2174/0929867320666131119151136.
2
Electrophysiologic analysis of a chronic seizure model after unilateral hippocampal KA injection.
Epilepsia. 1999 Sep;40(9):1210-21. doi: 10.1111/j.1528-1157.1999.tb00849.x.
3
Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro.
Prog Neurobiol. 2002 Oct;68(3):167-207. doi: 10.1016/s0301-0082(02)00077-1.
4
Evolution of interictal activity in models of mesial temporal lobe epilepsy.
Neurobiol Dis. 2023 May;180:106065. doi: 10.1016/j.nbd.2023.106065. Epub 2023 Mar 11.
5
Limbic networks and epileptiform synchronization: the view from the experimental side.
Int Rev Neurobiol. 2014;114:63-87. doi: 10.1016/B978-0-12-418693-4.00004-2.
6
Evolving Mechanistic Concepts of Epileptiform Synchronization and their Relevance in Curing Focal Epileptic Disorders.
Curr Neuropharmacol. 2019;17(9):830-842. doi: 10.2174/1570159X17666181127124803.
7
GABA signaling, focal epileptiform synchronization and epileptogenesis.
Front Neural Circuits. 2022 Oct 5;16:984802. doi: 10.3389/fncir.2022.984802. eCollection 2022.
8
Lacosamide modulates interictal spiking and high-frequency oscillations in a model of mesial temporal lobe epilepsy.
Epilepsy Res. 2015 Sep;115:8-16. doi: 10.1016/j.eplepsyres.2015.05.006. Epub 2015 May 19.
9
Does interictal synchronization influence ictogenesis?
Neuropharmacology. 2013 Jun;69:37-44. doi: 10.1016/j.neuropharm.2012.06.044. Epub 2012 Jul 6.
10
High-frequency (80-500 Hz) oscillations and epileptogenesis in temporal lobe epilepsy.
Neurobiol Dis. 2011 Jun;42(3):231-41. doi: 10.1016/j.nbd.2011.01.007. Epub 2011 Jan 14.

引用本文的文献

1
The Roles of Potassium and Calcium Currents in the Bistable Firing Transition.
Brain Sci. 2023 Sep 20;13(9):1347. doi: 10.3390/brainsci13091347.
2
The Role of Potassium and Calcium Currents in the Bistable Firing Transition.
bioRxiv. 2023 Aug 17:2023.08.16.553625. doi: 10.1101/2023.08.16.553625.
3
Human-Derived Cortical Neurospheroids Coupled to Passive, High-Density and 3D MEAs: A Valid Platform for Functional Tests.
Bioengineering (Basel). 2023 Apr 6;10(4):449. doi: 10.3390/bioengineering10040449.
4
Shared functional network abnormality in patients with temporal lobe epilepsy and their siblings.
CNS Neurosci Ther. 2023 Apr;29(4):1109-1119. doi: 10.1111/cns.14087. Epub 2023 Jan 17.
5
Network analysis of preictal iEEG reveals changes in network structure preceding seizure onset.
Sci Rep. 2022 Jul 22;12(1):12526. doi: 10.1038/s41598-022-16877-x.
6
Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations.
Neuroscience. 2022 May 1;489:111-142. doi: 10.1016/j.neuroscience.2021.08.035. Epub 2021 Sep 8.
7
The potential antiepileptogenic effect of neuronal Cx36 gap junction channel blockage.
Transl Neurosci. 2021 Jan 22;12(1):46-51. doi: 10.1515/tnsci-2021-0008. eCollection 2021 Jan 1.
8
Connexin 43 Differentially Regulates Epileptiform Activity in Models of Convulsive and Non-convulsive Epilepsies.
Front Cell Neurosci. 2019 May 10;13:173. doi: 10.3389/fncel.2019.00173. eCollection 2019.
9
Brain-Computer Interface (BCI) Applications in Mapping of Epileptic Brain Networks Based on Intracranial-EEG: An Update.
Front Neurosci. 2019 Mar 27;13:191. doi: 10.3389/fnins.2019.00191. eCollection 2019.
10
Models for Seizure-Liability Testing Using Induced Pluripotent Stem Cells.
Front Neurosci. 2018 Aug 31;12:590. doi: 10.3389/fnins.2018.00590. eCollection 2018.

本文引用的文献

1
Two different interictal spike patterns anticipate ictal activity in vitro.
Neurobiol Dis. 2013 Apr;52:168-76. doi: 10.1016/j.nbd.2012.12.004. Epub 2012 Dec 24.
2
New vistas on astroglia in convulsive and non-convulsive epilepsy highlight novel astrocytic targets for treatment.
J Physiol. 2013 Feb 15;591(4):775-85. doi: 10.1113/jphysiol.2012.243378. Epub 2012 Dec 10.
3
4
Behavior-dependent specialization of identified hippocampal interneurons.
Nat Neurosci. 2012 Sep;15(9):1265-71. doi: 10.1038/nn.3176. Epub 2012 Aug 5.
5
Does interictal synchronization influence ictogenesis?
Neuropharmacology. 2013 Jun;69:37-44. doi: 10.1016/j.neuropharm.2012.06.044. Epub 2012 Jul 6.
6
Changes in interictal spike features precede the onset of temporal lobe epilepsy.
Ann Neurol. 2012 Jun;71(6):805-14. doi: 10.1002/ana.23549.
7
High-frequency oscillations (HFOs) in clinical epilepsy.
Prog Neurobiol. 2012 Sep;98(3):302-15. doi: 10.1016/j.pneurobio.2012.03.001. Epub 2012 Apr 3.
8
High frequency oscillations in the intact brain.
Prog Neurobiol. 2012 Sep;98(3):241-9. doi: 10.1016/j.pneurobio.2012.02.004. Epub 2012 Mar 17.
9
Mechanisms of physiological and epileptic HFO generation.
Prog Neurobiol. 2012 Sep;98(3):250-64. doi: 10.1016/j.pneurobio.2012.02.005. Epub 2012 Mar 7.
10
Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial.
JAMA. 2012 Mar 7;307(9):922-30. doi: 10.1001/jama.2012.220.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验