Avoli M
Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, PQ, Canada, H3A 2B4.
Curr Med Chem. 2014;21(6):653-62. doi: 10.2174/0929867320666131119151136.
Neuronal synchronization supports different physiological states such as cognitive functions and sleep, and it is mirrored by identifiable EEG patterns ranging from gamma to delta oscillations. However, excessive neuronal synchronization is often the hallmark of epileptic activity in both generalized and partial epileptic disorders. Here, I will review the synchronizing mechanisms involved in generating epileptiform activity in the limbic system, which is closely involved in the pathophysiogenesis of temporal lobe epilepsy (TLE). TLE is often associated to a typical pattern of brain damage known as mesial temporal sclerosis, and it is one of the most refractory adult form of partial epilepsy. This epileptic disorder can be reproduced in animals by topical or systemic injection of pilocarpine or kainic acid, or by repetitive electrical stimulation; these procedures induce an initial status epilepticus and cause 1-4 weeks later a chronic condition of recurrent limbic seizures. Remarkably, a similar, seizure-free, latent period can be identified in TLE patients who suffered an initial insult in childhood and develop partial seizures in adolescence or early adulthood. Specifically, I will focus here on the neuronal mechanisms underlying three abnormal types of neuronal synchronization seen in both TLE patients and animal models mimicking this disorder: (i) interictal spikes; (ii) high frequency oscillations (80-500 Hz); and (iii) ictal (i.e., seizure) discharges. In addition, I will discuss the relationship between interictal spikes and ictal activity as well as recent evidence suggesting that specific seizure onsets in the pilocarpine model of TLE are characterized by distinctive patterns of spiking (also termed preictal) and high frequency oscillations.
神经元同步支持不同的生理状态,如认知功能和睡眠,并且可通过从γ振荡到δ振荡等可识别的脑电图模式反映出来。然而,在全身性和局灶性癫痫疾病中,过度的神经元同步往往是癫痫活动的标志。在此,我将综述在边缘系统中产生癫痫样活动所涉及的同步机制,边缘系统与颞叶癫痫(TLE)的病理生理发生密切相关。TLE通常与一种称为内侧颞叶硬化的典型脑损伤模式相关,并且它是成人最难治疗的局灶性癫痫形式之一。这种癫痫疾病可通过局部或全身注射毛果芸香碱或 kainic 酸,或通过重复电刺激在动物中重现;这些程序会诱发初始癫痫持续状态,并在1 - 4周后导致复发性边缘叶癫痫的慢性状况。值得注意的是,在童年期遭受初始损伤并在青春期或成年早期发展为局灶性癫痫发作的TLE患者中,可以识别出类似的、无癫痫发作的潜伏期。具体而言,我将在此重点关注在TLE患者和模拟这种疾病的动物模型中所见的三种异常类型的神经元同步的潜在神经机制:(i)发作间期棘波;(ii)高频振荡(80 - 500Hz);以及(iii)发作期(即癫痫发作)放电。此外,我将讨论发作间期棘波与发作期活动之间的关系,以及最近的证据表明,TLE毛果芸香碱模型中的特定癫痫发作起始具有独特的棘波(也称为发作前)和高频振荡模式。