Suppr超能文献

SIRT3使ATP合酶F1复合体蛋白发生去乙酰化反应,以应对营养和运动诱导的应激。

SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress.

作者信息

Vassilopoulos Athanassios, Pennington J Daniel, Andresson Thorkell, Rees David M, Bosley Allen D, Fearnley Ian M, Ham Amy, Flynn Charles Robb, Hill Salisha, Rose Kristie Lindsey, Kim Hyun-Seok, Deng Chu-Xia, Walker John E, Gius David

机构信息

1 Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.

出版信息

Antioxid Redox Signal. 2014 Aug 1;21(4):551-64. doi: 10.1089/ars.2013.5420. Epub 2014 Mar 6.

Abstract

AIMS

Adenosine triphosphate (ATP) synthase uses chemiosmotic energy across the inner mitochondrial membrane to convert adenosine diphosphate and orthophosphate into ATP, whereas genetic deletion of Sirt3 decreases mitochondrial ATP levels. Here, we investigate the mechanistic connection between SIRT3 and energy homeostasis.

RESULTS

By using both in vitro and in vivo experiments, we demonstrate that ATP synthase F1 proteins alpha, beta, gamma, and Oligomycin sensitivity-conferring protein (OSCP) contain SIRT3-specific reversible acetyl-lysines that are evolutionarily conserved and bind to SIRT3. OSCP was further investigated and lysine 139 is a nutrient-sensitive SIRT3-dependent deacetylation target. Site directed mutants demonstrate that OSCP(K139) directs, at least in part, mitochondrial ATP production and mice lacking Sirt3 exhibit decreased ATP muscle levels, increased ATP synthase protein acetylation, and an exercise-induced stress-deficient phenotype.

INNOVATION

This work connects the aging and nutrient response, via SIRT3 direction of the mitochondrial acetylome, to the regulation of mitochondrial energy homeostasis under nutrient-stress conditions by deacetylating ATP synthase proteins.

CONCLUSION

Our data suggest that acetylome signaling contributes to mitochondrial energy homeostasis by SIRT3-mediated deacetylation of ATP synthase proteins.

摘要

目的

三磷酸腺苷(ATP)合酶利用线粒体内膜两侧的化学渗透能将二磷酸腺苷和正磷酸盐转化为ATP,而Sirt3基因缺失会降低线粒体ATP水平。在此,我们研究SIRT3与能量稳态之间的机制联系。

结果

通过体外和体内实验,我们证明ATP合酶F1蛋白α、β、γ和赋予寡霉素敏感性的蛋白(OSCP)含有SIRT3特异性的可逆乙酰赖氨酸,这些赖氨酸在进化上保守且与SIRT3结合。对OSCP进行了进一步研究,赖氨酸139是一个营养敏感的SIRT3依赖性去乙酰化靶点。定点突变表明,OSCP(K139)至少部分地指导线粒体ATP的产生,缺乏Sirt3的小鼠表现出ATP肌肉水平降低、ATP合酶蛋白乙酰化增加以及运动诱导的应激缺陷表型。

创新点

这项工作通过SIRT3对线粒体乙酰化组的指导,将衰老和营养反应与营养应激条件下线粒体能量稳态的调节联系起来,即通过使ATP合酶蛋白去乙酰化来实现。

结论

我们的数据表明,乙酰化组信号通过SIRT3介导的ATP合酶蛋白去乙酰化作用,有助于线粒体能量稳态。

相似文献

1
SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress.
Antioxid Redox Signal. 2014 Aug 1;21(4):551-64. doi: 10.1089/ars.2013.5420. Epub 2014 Mar 6.
3
Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization.
Cell. 2016 Nov 3;167(4):985-1000.e21. doi: 10.1016/j.cell.2016.10.016. Epub 2016 Oct 27.
4
MicroRNA-195 Regulates Metabolism in Failing Myocardium Via Alterations in Sirtuin 3 Expression and Mitochondrial Protein Acetylation.
Circulation. 2018 May 8;137(19):2052-2067. doi: 10.1161/CIRCULATIONAHA.117.030486. Epub 2018 Jan 12.
5
PGC-1α/ERRα-Sirt3 Pathway Regulates DAergic Neuronal Death by Directly Deacetylating SOD2 and ATP Synthase β.
Antioxid Redox Signal. 2016 Feb 20;24(6):312-28. doi: 10.1089/ars.2015.6403. Epub 2015 Nov 19.
8
Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease.
Nat Commun. 2016 May 6;7:11483. doi: 10.1038/ncomms11483.
10
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation.
Nature. 2010 Mar 4;464(7285):121-5. doi: 10.1038/nature08778.

引用本文的文献

2
Potential role of lysine acetylation in the stepwise adaptation of to fluconazole.
Microbiol Spectr. 2025 May 6;13(5):e0279724. doi: 10.1128/spectrum.02797-24. Epub 2025 Apr 15.
3
SIRT5: a potential target for discovering bioactive natural products.
J Nat Med. 2025 May;79(3):441-464. doi: 10.1007/s11418-024-01871-6. Epub 2025 Feb 20.
4
Acetylation of proximal cysteine-lysine pairs by alcohol metabolism.
Redox Biol. 2025 Feb;79:103462. doi: 10.1016/j.redox.2024.103462. Epub 2024 Dec 12.
5
Inhibition of Sirtuin Deacylase Activity by Peroxynitrite.
Biochemistry. 2024 Oct 1;63(19):2463-2476. doi: 10.1021/acs.biochem.4c00257. Epub 2024 Sep 10.
6
The role of SIRT3 in homeostasis and cellular health.
Front Cell Neurosci. 2024 Aug 2;18:1434459. doi: 10.3389/fncel.2024.1434459. eCollection 2024.
8
Unlocking the Nexus of Sirtuins: A Comprehensive Review of Their Role in Skeletal Muscle Metabolism, Development, and Disorders.
Int J Biol Sci. 2024 Jun 3;20(8):3219-3235. doi: 10.7150/ijbs.96885. eCollection 2024.
10
with high pressure wine steaming enhanced anti-hepatic fibrosis: Possible through SIRT3-AMPK axis.
J Pharm Anal. 2024 May;14(5):100927. doi: 10.1016/j.jpha.2023.12.017. Epub 2023 Dec 21.

本文引用的文献

1
Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome.
Nat Immunol. 2013 May;14(5):454-60. doi: 10.1038/ni.2550. Epub 2013 Mar 17.
2
The sirtuin inhibitor cambinol impairs MAPK signaling, inhibits inflammatory and innate immune responses and protects from septic shock.
Biochim Biophys Acta. 2013 Jun;1833(6):1498-510. doi: 10.1016/j.bbamcr.2013.03.004. Epub 2013 Mar 13.
4
Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production.
Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14608-13. doi: 10.1073/pnas.1111308108. Epub 2011 Aug 22.
6
Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS.
EMBO Rep. 2011 Jun;12(6):534-41. doi: 10.1038/embor.2011.65. Epub 2011 May 13.
9
Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria.
Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16823-7. doi: 10.1073/pnas.1011099107. Epub 2010 Sep 16.
10
SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice.
J Biol Chem. 2010 Nov 19;285(47):36776-84. doi: 10.1074/jbc.M110.168039. Epub 2010 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验