Suppr超能文献

为结构糖组学塑形:一种预测性寡糖构象分析方案,应用于 N-连接聚糖。

Shaping up for structural glycomics: a predictive protocol for oligosaccharide conformational analysis applied to N-linked glycans.

机构信息

Faculty of Life Sciences, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK.

Faculty of Life Sciences, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK.

出版信息

Carbohydr Res. 2014 Jan 13;383:34-42. doi: 10.1016/j.carres.2013.10.011. Epub 2013 Oct 30.

Abstract

The human glycome comprises a vast untapped repository of 3D-structural information that holds the key to glycan recognition and a new era of rationally designed mimetic chemical probes, drugs, and biomaterials. Toward routine prediction of oligosaccharide conformational populations and exchange rates at thermodynamic equilibrium, we apply hardware-accelerated aqueous molecular dynamics to model μs motions in N-glycans that underpin inflammation and immunity. In 10μs simulations, conformational equilibria of mannosyl cores, sialyl Lewis (sLe) antennae, and constituent sub-sequences agreed with prior refinements (X-ray and NMR). Glycosidic linkage and pyranose ring flexing were affected by branching, linkage position, and secondary structure, implicating sequence dependent motions in glycomic functional diversity. Linkage and ring conformational transitions that have eluded precise quantification by experiment and conventional (ns) simulations were predicted to occur on μs timescales. All rings populated non-chair shapes and the stacked galactose and fucose pyranoses of sLe(a) and sLe(x) were rigidified, suggesting an exploitable 3D-signature of cell adhesion protein binding. Analyses of sLe(x) dynamics over 25μs revealed that only 10μs were sufficient to explore all aqueous conformers. This simulation protocol, which yields conformational ensembles that are independent of initial 3D-structure, is proposed as a route to understanding oligosaccharide recognition and structure-activity relationships, toward development of carbohydrate-based novel chemical entities.

摘要

人类糖组包含一个巨大的未开发的 3D 结构信息库,这些信息是糖识别的关键,也是合理设计模拟化学探针、药物和生物材料的新时代的关键。为了常规预测寡糖构象群体和热力学平衡下的交换率,我们应用硬件加速的水相分子动力学来模拟 N-糖基化在炎症和免疫中起基础作用的 μs 运动。在 10μs 的模拟中,甘露糖核心、唾液酸路易斯(sLe)天线和组成的亚序列的构象平衡与之前的精修(X 射线和 NMR)一致。糖苷键和吡喃糖环的弯曲受到分支、键位置和二级结构的影响,暗示序列依赖性运动在糖组学功能多样性中起作用。实验和传统(ns)模拟难以精确量化的糖苷键和环构象转变被预测将在 μs 时间尺度上发生。所有的环都占据了非椅式形状,sLe(a)和 sLe(x)的堆叠半乳糖和岩藻糖吡喃糖被固定化,这表明细胞黏附蛋白结合具有可开发的 3D 特征。对 sLe(x)动力学的 25μs 分析表明,只需 10μs 即可探索所有水相构象。该模拟方案产生不依赖于初始 3D 结构的构象集合,被提议作为理解寡糖识别和结构-活性关系的途径,以开发基于碳水化合物的新型化学实体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3777/3909462/7939e28a48fb/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验