Judson Matthew C, Sosa-Pagan Jason O, Del Cid Wilmer A, Han Ji Eun, Philpot Benjamin D
Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599.
J Comp Neurol. 2014 Jun 1;522(8):1874-96. doi: 10.1002/cne.23507.
Genetic alterations of the maternal UBE3A allele result in Angelman syndrome (AS), a neurodevelopmental disorder characterized by severe developmental delay, lack of speech, and difficulty with movement and balance. The combined effects of maternal UBE3A mutation and cell type-specific epigenetic silencing of paternal UBE3A are hypothesized to result in a complete loss of functional UBE3A protein in neurons. However, the allelic specificity of UBE3A expression in neurons and other cell types in the brain has yet to be characterized throughout development, including the early postnatal period when AS phenotypes emerge. Here we define maternal and paternal allele-specific Ube3a protein expression throughout postnatal brain development in the mouse, a species that exhibits orthologous epigenetic silencing of paternal Ube3a in neurons and AS-like behavioral phenotypes subsequent to maternal Ube3a deletion. We find that neurons downregulate paternal Ube3a protein expression as they mature and, with the exception of neurons born from postnatal stem cell niches, do not express detectable paternal Ube3a beyond the first postnatal week. By contrast, neurons express maternal Ube3a throughout postnatal development, during which time localization of the protein becomes increasingly nuclear. Unlike neurons, astrocytes and oligodendrotyes biallelically express Ube3a. Notably, mature oligodendrocytes emerge as the predominant Ube3a-expressing glial cell type in the cortex and white matter tracts during postnatal development. These findings demonstrate the spatiotemporal characteristics of allele-specific Ube3a expression in key brain cell types, thereby improving our understanding of the developmental parameters of paternal Ube3a silencing and the cellular basis of AS.
母体UBE3A等位基因的遗传改变会导致天使综合征(AS),这是一种神经发育障碍,其特征为严重发育迟缓、无语言能力以及运动和平衡困难。据推测,母体UBE3A突变与父本UBE3A的细胞类型特异性表观遗传沉默的联合作用会导致神经元中功能性UBE3A蛋白完全缺失。然而,在整个发育过程中,包括出现AS表型的出生后早期,大脑中神经元和其他细胞类型中UBE3A表达的等位基因特异性尚未得到明确。在此,我们确定了小鼠出生后脑发育过程中母本和父本等位基因特异性Ube3a蛋白的表达情况,小鼠在母体Ube3a缺失后,神经元中会出现父本Ube3a的直系同源表观遗传沉默以及AS样行为表型。我们发现,神经元在成熟过程中会下调父本Ube3a蛋白的表达,并且除了出生后干细胞龛产生的神经元外,在出生后第一周之后不会表达可检测到的父本Ube3a。相比之下,神经元在整个出生后发育过程中都表达母本Ube3a,在此期间该蛋白的定位越来越多地集中在细胞核中。与神经元不同,星形胶质细胞和少突胶质细胞双等位基因表达Ube3a。值得注意的是,在出生后发育过程中,成熟的少突胶质细胞成为皮质和白质束中主要表达Ube3a的神经胶质细胞类型。这些发现证明了关键脑细胞类型中等位基因特异性Ube3a表达的时空特征,从而增进了我们对父本Ube3a沉默的发育参数以及AS细胞基础的理解。