Okada Hiroki, Ohnuki Shinsuke, Roncero Cesar, Konopka James B, Ohya Yoshikazu
Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, CSIC/Universidad de Salamanca, 37007 Salamanca, Spain Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794.
Mol Biol Cell. 2014 Jan;25(2):222-33. doi: 10.1091/mbc.E13-07-0396. Epub 2013 Nov 20.
The cell wall of budding yeast is a rigid structure composed of multiple components. To thoroughly understand its involvement in morphogenesis, we used the image analysis software CalMorph to quantitatively analyze cell morphology after treatment with drugs that inhibit different processes during cell wall synthesis. Cells treated with cell wall-affecting drugs exhibited broader necks and increased morphological variation. Tunicamycin, which inhibits the initial step of N-glycosylation of cell wall mannoproteins, induced morphologies similar to those of strains defective in α-mannosylation. The chitin synthase inhibitor nikkomycin Z induced morphological changes similar to those of mutants defective in chitin transglycosylase, possibly due to the critical role of chitin in anchoring the β-glucan network. To define the mode of action of echinocandin B, a 1,3-β-glucan synthase inhibitor, we compared the morphology it induced with mutants of Fks1 that contains the catalytic domain for 1,3-β-glucan synthesis. Echinocandin B exerted morphological effects similar to those observed in some fks1 mutants, with defects in cell polarity and reduced glucan synthesis activity, suggesting that echinocandin B affects not only 1,3-β-glucan synthesis, but also another functional domain. Thus our multivariate analyses reveal discrete functions of cell wall components and increase our understanding of the pharmacology of antifungal drugs.
出芽酵母的细胞壁是一个由多种成分组成的刚性结构。为了深入了解其在形态发生中的作用,我们使用图像分析软件CalMorph对用抑制细胞壁合成过程中不同步骤的药物处理后的细胞形态进行了定量分析。用影响细胞壁的药物处理的细胞表现出更宽的颈部和增加的形态变异。衣霉素抑制细胞壁甘露糖蛋白的N-糖基化初始步骤,诱导出与α-甘露糖基化缺陷菌株相似的形态。几丁质合酶抑制剂多氧霉素Z诱导出与几丁质转糖基酶缺陷突变体相似的形态变化,这可能是由于几丁质在锚定β-葡聚糖网络中的关键作用。为了确定1,3-β-葡聚糖合酶抑制剂棘白菌素B的作用方式,我们将其诱导的形态与含有1,3-β-葡聚糖合成催化结构域的Fks1突变体进行了比较。棘白菌素B产生的形态学效应与在一些fks1突变体中观察到的相似,具有细胞极性缺陷和葡聚糖合成活性降低的情况,这表明棘白菌素B不仅影响1,3-β-葡聚糖合成,还影响另一个功能结构域。因此,我们的多变量分析揭示了细胞壁成分的离散功能,并增加了我们对抗真菌药物药理学的理解。