School of Pharmacy, University of Waterloo, 200 University Ave W, Waterloo, ON, Canada.
J Pharmacokinet Pharmacodyn. 2014 Feb;41(1):1-14. doi: 10.1007/s10928-013-9342-0. Epub 2013 Nov 21.
Physiologically based pharmacokinetic (PBPK) modeling is a tool used in drug discovery and human health risk assessment. PBPK models are mathematical representations of the anatomy, physiology and biochemistry of an organism and are used to predict a drug's pharmacokinetics in various situations. Tissue to plasma partition coefficients (Kp), key PBPK model parameters, define the steady-state concentration differential between tissue and plasma and are used to predict the volume of distribution. The experimental determination of these parameters once limited the development of PBPK models; however, in silico prediction methods were introduced to overcome this issue. The developed algorithms vary in input parameters and prediction accuracy, and none are considered standard, warranting further research. In this study, a novel decision-tree-based Kp prediction method was developed using six previously published algorithms. The aim of the developed classifier was to identify the most accurate tissue-specific Kp prediction algorithm for a new drug. A dataset consisting of 122 drugs was used to train the classifier and identify the most accurate Kp prediction algorithm for a certain physicochemical space. Three versions of tissue-specific classifiers were developed and were dependent on the necessary inputs. The use of the classifier resulted in a better prediction accuracy than that of any single Kp prediction algorithm for all tissues, the current mode of use in PBPK model building. Because built-in estimation equations for those input parameters are not necessarily available, this Kp prediction tool will provide Kp prediction when only limited input parameters are available. The presented innovative method will improve tissue distribution prediction accuracy, thus enhancing the confidence in PBPK modeling outputs.
基于生理学的药代动力学(PBPK)模型是药物发现和人类健康风险评估中使用的一种工具。PBPK 模型是生物体解剖结构、生理学和生物化学的数学表示,用于预测药物在各种情况下的药代动力学。组织到血浆分配系数(Kp),PBPK 模型的关键参数,定义了组织和血浆之间的稳态浓度差,并用于预测分布容积。这些参数的实验测定曾经限制了 PBPK 模型的发展;然而,引入了计算预测方法来克服这个问题。开发的算法在输入参数和预测准确性方面存在差异,没有一个被认为是标准的,需要进一步研究。在这项研究中,使用六个已发表的算法开发了一种新的基于决策树的 Kp 预测方法。该分类器的目的是确定最准确的组织特异性 Kp 预测算法,用于一种新的药物。使用包含 122 种药物的数据集来训练分类器,并确定在特定物理化学空间中最准确的 Kp 预测算法。开发了三个版本的组织特异性分类器,并且取决于必要的输入。与当前在 PBPK 模型构建中使用的任何单个 Kp 预测算法相比,使用分类器可提高所有组织的预测准确性,这是当前的使用模式。由于不一定有这些输入参数的内置估算方程,因此当只有有限的输入参数可用时,此 Kp 预测工具将提供 Kp 预测。所提出的创新方法将提高组织分布预测的准确性,从而增强对 PBPK 建模输出的信心。