Suppr超能文献

发育机制的进化:颅面骨发生过程中细胞周期和事件时间的种特异性调控。

Evolution of a developmental mechanism: Species-specific regulation of the cell cycle and the timing of events during craniofacial osteogenesis.

机构信息

University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA.

RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku Kobe 650-0047, Japan.

出版信息

Dev Biol. 2014 Jan 15;385(2):380-95. doi: 10.1016/j.ydbio.2013.11.011. Epub 2013 Nov 18.

Abstract

Neural crest mesenchyme (NCM) controls species-specific pattern in the craniofacial skeleton but how this cell population accomplishes such a complex task remains unclear. To elucidate mechanisms through which NCM directs skeletal development and evolution, we made chimeras from quail and duck embryos, which differ markedly in their craniofacial morphology and maturation rates. We show that quail NCM, when transplanted into duck, maintains its faster timetable for development and autonomously executes molecular and cellular programs for the induction, differentiation, and mineralization of bone, including premature expression of osteogenic genes such as Runx2 and Col1a1. In contrast, the duck host systemic environment appears to be relatively permissive and supports osteogenesis independently by providing circulating minerals and a vascular network. Further experiments reveal that NCM establishes the timing of osteogenesis by regulating cell cycle progression in a stage- and species-specific manner. Altering the time-course of D-type cyclin expression mimics chimeras by accelerating expression of Runx2 and Col1a1. We also discover higher endogenous expression of Runx2 in quail coincident with their smaller craniofacial skeletons, and by prematurely over-expressing Runx2 in chick embryos we reduce the overall size of the craniofacial skeleton. Thus, our work indicates that NCM establishes species-specific size in the craniofacial skeleton by controlling cell cycle, Runx2 expression, and the timing of key events during osteogenesis.

摘要

神经嵴间质(NCM)控制颅面骨骼的物种特异性模式,但这种细胞群体如何完成如此复杂的任务尚不清楚。为了阐明 NCM 指导骨骼发育和进化的机制,我们制作了来自鹌鹑和鸭胚胎的嵌合体,它们在颅面形态和成熟速度上有明显差异。我们表明,当鹌鹑 NCM 移植到鸭中时,它保持了更快的发育时间表,并自主执行诱导、分化和矿化骨骼的分子和细胞程序,包括过早表达成骨基因,如 Runx2 和 Col1a1。相比之下,鸭宿主的系统环境似乎相对宽容,并通过提供循环矿物质和血管网络独立支持成骨作用。进一步的实验表明,NCM 通过以阶段和物种特异性的方式调节细胞周期进程来确定成骨的时间。改变 D 型细胞周期蛋白表达的时间进程可以通过加速 Runx2 和 Col1a1 的表达来模拟嵌合体。我们还发现,鹌鹑中 Runx2 的内源性表达较高,与其较小的颅面骨骼相对应,并且通过在鸡胚胎中过早过表达 Runx2,我们减少了颅面骨骼的整体大小。因此,我们的工作表明,NCM 通过控制细胞周期、Runx2 表达以及成骨过程中的关键事件的时间来建立颅面骨骼的物种特异性大小。

相似文献

6
Regulation of Jaw Length During Development, Disease, and Evolution.发育、疾病及进化过程中颌骨长度的调控
Curr Top Dev Biol. 2015;115:271-98. doi: 10.1016/bs.ctdb.2015.08.002. Epub 2015 Oct 20.
9
Developmental origins of species-specific muscle pattern.物种特异性肌肉模式的发育起源
Dev Biol. 2009 Jul 15;331(2):311-25. doi: 10.1016/j.ydbio.2009.05.548. Epub 2009 May 18.

引用本文的文献

2
Cellular, Molecular, and Genetic Mechanisms of Avian Beak Development and Evolution.鸟类喙发育和进化的细胞、分子和遗传机制。
Annu Rev Genet. 2024 Nov;58(1):433-454. doi: 10.1146/annurev-genet-111523-101929. Epub 2024 Nov 14.
9
Neural crest cells as a source of microevolutionary variation.神经嵴细胞作为微进化变异的来源。
Semin Cell Dev Biol. 2023 Aug;145:42-51. doi: 10.1016/j.semcdb.2022.06.001. Epub 2022 Jun 16.

本文引用的文献

6
Mesenchymal and mechanical mechanisms of secondary cartilage induction.间质和机械机制在二次软骨诱导中的作用。
Dev Biol. 2011 Aug 1;356(1):28-39. doi: 10.1016/j.ydbio.2011.05.003. Epub 2011 May 11.
8
Developmental origins of species-specific muscle pattern.物种特异性肌肉模式的发育起源
Dev Biol. 2009 Jul 15;331(2):311-25. doi: 10.1016/j.ydbio.2009.05.548. Epub 2009 May 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验