Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America.
PLoS Biol. 2013 Nov;11(11):e1001711. doi: 10.1371/journal.pbio.1001711. Epub 2013 Nov 12.
Sex chromosomes originated from autosomes but have evolved a highly specialized chromatin structure. Drosophila Y chromosomes are composed entirely of silent heterochromatin, while male X chromosomes have highly accessible chromatin and are hypertranscribed as a result of dosage compensation. Here, we dissect the molecular mechanisms and functional pressures driving heterochromatin formation and dosage compensation of the recently formed neo-sex chromosomes of Drosophila miranda. We show that the onset of heterochromatin formation on the neo-Y is triggered by an accumulation of repetitive DNA. The neo-X has evolved partial dosage compensation and we find that diverse mutational paths have been utilized to establish several dozen novel binding consensus motifs for the dosage compensation complex on the neo-X, including simple point mutations at pre-binding sites, insertion and deletion mutations, microsatellite expansions, or tandem amplification of weak binding sites. Spreading of these silencing or activating chromatin modifications to adjacent regions results in massive mis-expression of neo-sex linked genes, and little correspondence between functionality of genes and their silencing on the neo-Y or dosage compensation on the neo-X. Intriguingly, the genomic regions being targeted by the dosage compensation complex on the neo-X and those becoming heterochromatic on the neo-Y show little overlap, possibly reflecting different propensities along the ancestral chromosome that formed the sex chromosome to adopt active or repressive chromatin configurations. Our findings have broad implications for current models of sex chromosome evolution, and demonstrate how mechanistic constraints can limit evolutionary adaptations. Our study also highlights how evolution can follow predictable genetic trajectories, by repeatedly acquiring the same 21-bp consensus motif for recruitment of the dosage compensation complex, yet utilizing a diverse array of random mutational changes to attain the same phenotypic outcome.
性染色体起源于常染色体,但已经进化出高度特化的染色质结构。果蝇的 Y 染色体完全由沉默的异染色质组成,而雄性的 X 染色体具有高度可及的染色质,并且由于剂量补偿而被过度转录。在这里,我们剖析了驱动最近形成的果蝇 miranda 新性染色体异染色质形成和剂量补偿的分子机制和功能压力。我们表明,新 Y 上异染色质形成的开始是由重复 DNA 的积累触发的。新 X 染色体已经进化出部分剂量补偿,我们发现,为了在新 X 染色体上建立几十个新的剂量补偿复合物结合的共识基序,已经利用了多种突变途径,包括预结合位点的简单点突变、插入和缺失突变、微卫星扩展或弱结合位点的串联扩增。这些沉默或激活染色质修饰向相邻区域的扩散导致大量新性连锁基因的错误表达,而基因的功能与其在新 Y 染色体上的沉默或在新 X 染色体上的剂量补偿之间几乎没有对应关系。有趣的是,剂量补偿复合物在新 X 染色体上的靶基因组区域和在新 Y 染色体上变得异染色质的区域之间几乎没有重叠,这可能反映了形成性染色体的祖先染色体在采用活性或抑制性染色质构象方面的不同倾向。我们的研究结果对当前的性染色体进化模型具有广泛的意义,并证明了机制约束如何限制进化适应。我们的研究还强调了进化如何遵循可预测的遗传轨迹,通过反复获得用于招募剂量补偿复合物的相同 21 个碱基对的共识基序,同时利用多种多样的随机突变变化来达到相同的表型结果。