Suppr超能文献

哺乳动物中的线粒体清除,从蛋白质降解到线粒体自噬

Mitochondrial dismissal in mammals, from protein degradation to mitophagy.

作者信息

Campello Silvia, Strappazzon Flavie, Cecconi Francesco

机构信息

IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.

IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.

出版信息

Biochim Biophys Acta. 2014 Apr;1837(4):451-60. doi: 10.1016/j.bbabio.2013.11.010. Epub 2013 Nov 22.

Abstract

Mitochondria are double-membraned highly dynamic organelles; the shape, location and function of which are determined by a constant balance between opposing fusion and fission events. A fine modulation of mitochondrial structure is crucial for their correct functionality and for many physiological cell processes, the status of these organelles, being thus a key aspect in a cell's fate. Indeed, the homeostasis of mitochondria needs to be highly regulated for the above mentioned reasons, and since a) they are the major source of energy; b) they participate in various signaling pathways; albeit at the same time c) they are also the major source of reactive oxygen species (ROS, the main damaging detrimental players for all cell components). Elaborate mechanisms of mitochondrial quality control have evolved for maintaining a functional mitochondrial network and avoiding cell damage. The first mechanism is the removal of damaged mitochondrial proteins within the organelle via chaperones and protease; the second is the cytosolic ubiquitin-proteasome system (UPS), able to eliminate proteins embedded in the outer mitochondrial membrane; the third is the removal of the entire mitochondria through mitophagy, in the case of extensive organelle damage and dysfunction. In this review, we provide an overview of these mitochondria stability and quality control mechanisms, highlighting mitophagy, and emphasizing the central role of mitochondrial dynamics in this context. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.

摘要

线粒体是具有双层膜的高度动态细胞器;其形状、位置和功能由融合与分裂这两种相反过程之间的持续平衡所决定。线粒体结构的精细调节对于其正确发挥功能以及许多细胞生理过程至关重要,这些细胞器的状态因此是细胞命运的关键方面。事实上,出于上述原因,线粒体的稳态需要高度调控,因为:a) 它们是主要的能量来源;b) 它们参与各种信号通路;然而同时 c) 它们也是活性氧(ROS,对所有细胞成分造成损害的主要有害因素)的主要来源。为维持功能性线粒体网络并避免细胞损伤,已进化出了复杂的线粒体质量控制机制。第一种机制是通过伴侣蛋白和蛋白酶清除线粒体内受损的线粒体蛋白;第二种是胞质泛素 - 蛋白酶体系统(UPS),它能够清除嵌入线粒体外膜的蛋白;第三种是在细胞器广泛损伤和功能障碍的情况下,通过线粒体自噬清除整个线粒体。在本综述中,我们概述了这些线粒体稳定性和质量控制机制,重点介绍了线粒体自噬,并强调了线粒体动力学在此背景下的核心作用。本文是名为“生物能膜及其成分的动态与超微结构”的特刊的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验