Berlin Kristoffer S, Williams Natalie A, Parra Gilbert R
PhD, Department of Psychology, The University of Memphis, 202 Psychology Building, Memphis, TN 38152, USA.
J Pediatr Psychol. 2014 Mar;39(2):174-87. doi: 10.1093/jpepsy/jst084. Epub 2013 Nov 25.
Pediatric psychologists are often interested in finding patterns in heterogeneous cross-sectional data. Latent variable mixture modeling is an emerging person-centered statistical approach that models heterogeneity by classifying individuals into unobserved groupings (latent classes) with similar (more homogenous) patterns. The purpose of this article is to offer a nontechnical introduction to cross-sectional mixture modeling.
An overview of latent variable mixture modeling is provided and 2 cross-sectional examples are reviewed and distinguished.
Step-by-step pediatric psychology examples of latent class and latent profile analyses are provided using the Early Childhood Longitudinal Study-Kindergarten Class of 1998-1999 data file.
Latent variable mixture modeling is a technique that is useful to pediatric psychologists who wish to find groupings of individuals who share similar data patterns to determine the extent to which these patterns may relate to variables of interest.
儿科心理学家常常对在异质性横断面数据中寻找模式感兴趣。潜在变量混合建模是一种新兴的以个体为中心的统计方法,它通过将个体分类到具有相似(更同质)模式的未观察到的分组(潜在类别)中来对异质性进行建模。本文的目的是对横断面混合建模进行非技术性介绍。
提供了潜在变量混合建模的概述,并对两个横断面示例进行了回顾和区分。
使用1998 - 1999年幼儿园班级幼儿纵向研究数据文件,提供了潜在类别和潜在剖面分析的逐步儿科心理学示例。
潜在变量混合建模是一种对希望找到具有相似数据模式的个体分组以确定这些模式与感兴趣变量相关程度的儿科心理学家有用的技术。