The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, Israel.
PLoS Comput Biol. 2013;9(11):e1003351. doi: 10.1371/journal.pcbi.1003351. Epub 2013 Nov 21.
The transcriptional networks that regulate gene expression and modifications to this network are at the core of the cancer phenotype. MicroRNAs, a well-studied species of small non-coding RNA molecules, have been shown to have a central role in regulating gene expression as part of this transcriptional network. Further, microRNA deregulation is associated with cancer development and with tumor progression. Glioblastoma Multiform (GBM) is the most common, aggressive and malignant primary tumor of the brain and is associated with one of the worst 5-year survival rates among all human cancers. To study the transcriptional network and its modifications in GBM, we utilized gene expression, microRNA sequencing, whole genome sequencing and clinical data from hundreds of patients from different datasets. Using these data and a novel microRNA-gene association approach we introduce, we have identified unique microRNAs and their associated genes. This unique behavior is composed of the ability of the quantifiable association of the microRNA and the gene expression levels, which we show stratify patients into clinical subgroups of high statistical significance. Importantly, this stratification goes unobserved by other methods and is not affiliated by other subsets or phenotypes within the data. To investigate the robustness of the introduced approach, we demonstrate, in unrelated datasets, robustness of findings. Among the set of identified microRNA-gene associations, we closely study the example of MAF and hsa-miR-330-3p, and show how their co-behavior stratifies patients into prognosis clinical groups and how whole genome sequences tells us more about a specific genomic variation as a possible basis for patient variances. We argue that these identified associations may indicate previously unexplored specific disease control mechanisms and may be used as basis for further study and for possible therapeutic intervention.
调控基因表达和对该网络进行修饰的转录网络是癌症表型的核心。microRNA 是一种经过充分研究的小非编码 RNA 分子,已被证明在作为该转录网络一部分的基因表达调控中发挥核心作用。此外,microRNA 的失调与癌症的发生和肿瘤的进展有关。多形性胶质母细胞瘤 (GBM) 是最常见、侵袭性最强和恶性程度最高的脑原发性肿瘤,其 5 年生存率是所有人类癌症中最低的之一。为了研究 GBM 中的转录网络及其修饰,我们利用来自不同数据集的数百名患者的基因表达、microRNA 测序、全基因组测序和临床数据进行研究。使用这些数据和我们引入的一种新的 microRNA-基因关联方法,我们鉴定了独特的 microRNA 及其相关基因。这种独特的行为由 microRNA 和基因表达水平的可量化关联的能力组成,我们展示了这些关联可以将患者分层为具有高度统计学意义的临床亚组。重要的是,这种分层是其他方法无法观察到的,并且与数据中的其他亚组或表型无关。为了研究所提出方法的稳健性,我们在不相关的数据集上展示了发现的稳健性。在所鉴定的 microRNA-基因关联中,我们仔细研究了 MAF 和 hsa-miR-330-3p 的例子,并展示了它们的共同行为如何将患者分层为预后临床组,以及全基因组序列如何告诉我们更多关于特定基因组变异的信息,作为患者变异的可能基础。我们认为,这些鉴定出的关联可能表明了以前未被探索的特定疾病控制机制,可作为进一步研究和可能的治疗干预的基础。