Suppr超能文献

利用长链非编码RNA介导的竞争性内源性RNA网络鉴定胶质母细胞瘤的预后生物标志物。

Identification of prognostic biomarkers in glioblastoma using a long non-coding RNA-mediated, competitive endogenous RNA network.

作者信息

Cao Yuze, Wang Peng, Ning Shangwei, Xiao Wenbiao, Xiao Bo, Li Xia

机构信息

Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.

出版信息

Oncotarget. 2016 Jul 5;7(27):41737-41747. doi: 10.18632/oncotarget.9569.

Abstract

Glioblastoma multiforme (GBM) is a highly malignant brain tumor associated with a poor prognosis. Cross-talk between competitive endogenous RNAs (ceRNAs) plays a critical role in tumor development and physiology. In this study, we present a multi-step computational approach to construct a functional GBM long non-coding RNA (lncRNA)-mediated ceRNA network (LMCN) by integrating genome-wide lncRNA and mRNA expression profiles, miRNA-target interactions, functional analyses, and clinical survival analyses. LncRNAs in the LMCN exhibited specific topological features consistent with a regulatory association with coding mRNAs across GBM pathology. We determined that the lncRNA MCM3AP-AS was involved in RNA processing and cell cycle-related functions, and was correlated with patient survival. MCM3AP-AS and MIR17HG acted synergistically to regulate mRNAs in a network module of the competitive LMCN. By integrating the expression profile of this module into a risk model, we stratified GBM patients in both the The Cancer Genome Atlas and an independent GBM dataset into distinct risk groups. Finally, survival analyses demonstrated that the lncRNAs and network module are potential prognostic biomarkers for GBM. Thus, ceRNAs could accelerate biomarker discovery and therapeutic development in GBM.

摘要

多形性胶质母细胞瘤(GBM)是一种高度恶性的脑肿瘤,预后较差。竞争性内源性RNA(ceRNA)之间的相互作用在肿瘤发生发展和生理过程中起着关键作用。在本研究中,我们提出了一种多步骤计算方法,通过整合全基因组lncRNA和mRNA表达谱、miRNA-靶标相互作用、功能分析和临床生存分析,构建功能性GBM长链非编码RNA(lncRNA)介导的ceRNA网络(LMCN)。LMCN中的lncRNAs表现出特定的拓扑特征,与GBM病理学中编码mRNA的调控关联一致。我们确定lncRNA MCM3AP-AS参与RNA加工和细胞周期相关功能,并与患者生存相关。MCM3AP-AS和MIR17HG在竞争性LMCN的一个网络模块中协同调节mRNA。通过将该模块的表达谱整合到一个风险模型中,我们将癌症基因组图谱和一个独立的GBM数据集中的GBM患者分层为不同的风险组。最后,生存分析表明,lncRNAs和网络模块是GBM潜在的预后生物标志物。因此,ceRNAs可以加速GBM生物标志物的发现和治疗开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7ec/5173092/ba9876125707/oncotarget-07-41737-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验