Suppr超能文献

流感病毒感染的多尺度建模支持直接作用抗病毒药物的开发。

Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals.

机构信息

Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.

出版信息

PLoS Comput Biol. 2013;9(11):e1003372. doi: 10.1371/journal.pcbi.1003372. Epub 2013 Nov 21.

Abstract

Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases.

摘要

甲型流感病毒是呼吸道病原体,每年可导致多达 50 万人死亡。然而,目前仅有两类抗病毒药物被批准用于治疗,而且耐药菌株的数量正在上升。发现新的抗流感药物的主要挑战是确定能够有效干扰病毒复制的药物靶点。为了支持这一发现,我们开发了一个甲型流感病毒感染的多尺度模型,该模型包含病毒在细胞内合成蛋白质、复制基因组和组装新病毒颗粒的细胞内水平,以及病毒传播到新宿主细胞的细胞外水平。这种综合建模方法再现了广泛的实验数据,包括受感染细胞内三种病毒 RNA 种类的时间过程以及细胞群体中的感染动力学。它还使我们能够系统地研究干扰病毒生命周期的特定步骤如何影响病毒产生。我们发现,病毒转录、复制、蛋白质合成、核输出和组装/释放抑制剂在降低病毒滴度方面最为有效,而靶向病毒进入主要会延迟感染。此外,我们的结果表明,对于一些抗病毒药物,治疗的成功与否在很大程度上取决于受感染细胞的寿命,因此,取决于病毒诱导的细胞凋亡或宿主免疫反应的动态。因此,所提出的模型提供了对甲型流感病毒感染和治疗的系统理解,以及一个理想的平台,可以进一步纳入复杂性以全面描述传染病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e38/3836700/084550818870/pcbi.1003372.g001.jpg

相似文献

1
Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals.
PLoS Comput Biol. 2013;9(11):e1003372. doi: 10.1371/journal.pcbi.1003372. Epub 2013 Nov 21.
6
A cell-based screening system for influenza A viral RNA transcription/replication inhibitors.
Sci Rep. 2013;3:1106. doi: 10.1038/srep01106. Epub 2013 Jan 22.
10
Virucidal nano-perforator of viral membrane trapping viral RNAs in the endosome.
Nat Commun. 2019 Jan 14;10(1):185. doi: 10.1038/s41467-018-08138-1.

引用本文的文献

1
Mammalian adaptation risk in HPAI H5N8: a comprehensive model bridging experimental data with mathematical insights.
Emerg Microbes Infect. 2024 Dec;13(1):2339949. doi: 10.1080/22221751.2024.2339949. Epub 2024 Apr 16.
2
Mathematical model calibrated to data predicts mechanisms of antiviral action of the influenza defective interfering particle "OP7".
iScience. 2024 Mar 5;27(4):109421. doi: 10.1016/j.isci.2024.109421. eCollection 2024 Apr 19.
3
Equilibria and oscillations in cheat-cooperator dynamics.
Evol Lett. 2023 Jul 22;7(5):339-350. doi: 10.1093/evlett/qrad032. eCollection 2023 Oct.
5
Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies.
PLoS Comput Biol. 2023 Apr 4;19(4):e1010423. doi: 10.1371/journal.pcbi.1010423. eCollection 2023 Apr.
8
Multiscale model of defective interfering particle replication for influenza A virus infection in animal cell culture.
PLoS Comput Biol. 2021 Sep 7;17(9):e1009357. doi: 10.1371/journal.pcbi.1009357. eCollection 2021 Sep.
10
Quantification of Ebola virus replication kinetics in vitro.
PLoS Comput Biol. 2020 Nov 2;16(11):e1008375. doi: 10.1371/journal.pcbi.1008375. eCollection 2020 Nov.

本文引用的文献

1
Continuous influenza virus production in cell culture shows a periodic accumulation of defective interfering particles.
PLoS One. 2013 Sep 5;8(9):e72288. doi: 10.1371/journal.pone.0072288. eCollection 2013.
2
Towards multiscale modeling of influenza infection.
J Theor Biol. 2013 Sep 7;332:267-90. doi: 10.1016/j.jtbi.2013.03.024. Epub 2013 Apr 19.
3
Development of cellular signaling pathway inhibitors as new antivirals against influenza.
Antiviral Res. 2013 Jun;98(3):457-68. doi: 10.1016/j.antiviral.2013.04.008. Epub 2013 Apr 16.
4
Assessing mathematical models of influenza infections using features of the immune response.
PLoS One. 2013;8(2):e57088. doi: 10.1371/journal.pone.0057088. Epub 2013 Feb 28.
5
Modeling shows that the NS5A inhibitor daclatasvir has two modes of action and yields a shorter estimate of the hepatitis C virus half-life.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3991-6. doi: 10.1073/pnas.1203110110. Epub 2013 Feb 19.
6
Antivirals in seasonal and pandemic influenza--future perspectives.
Influenza Other Respir Viruses. 2013 Jan;7 Suppl 1(Suppl 1):76-80. doi: 10.1111/irv.12049.
7
A small-RNA enhancer of viral polymerase activity.
J Virol. 2012 Dec;86(24):13475-85. doi: 10.1128/JVI.02295-12. Epub 2012 Oct 3.
8
Modeling within-host dynamics of influenza virus infection including immune responses.
PLoS Comput Biol. 2012;8(6):e1002588. doi: 10.1371/journal.pcbi.1002588. Epub 2012 Jun 28.
9
Productivity, apoptosis, and infection dynamics of influenza A/PR/8 strains and A/PR/8-based reassortants.
Vaccine. 2012 Jul 27;30(35):5253-61. doi: 10.1016/j.vaccine.2012.05.065. Epub 2012 Jun 12.
10
Antivirals targeting influenza A virus.
J Med Chem. 2012 Jul 26;55(14):6263-77. doi: 10.1021/jm300455c. Epub 2012 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验