Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Nat Commun. 2019 Jan 14;10(1):185. doi: 10.1038/s41467-018-08138-1.
Membrane-disrupting agents that selectively target virus versus host membranes could potentially inhibit a broad-spectrum of enveloped viruses, but currently such antivirals are lacking. Here, we develop a nanodisc incorporated with a decoy virus receptor that inhibits virus infection. Mechanistically, nanodiscs carrying the viral receptor sialic acid bind to influenza virions and are co-endocytosed into host cells. At low pH in the endosome, the nanodiscs rupture the viral envelope, trapping viral RNAs inside the endolysosome for enzymatic decomposition. In contrast, liposomes containing a decoy receptor show weak antiviral activity due to the lack of membrane disruption. The nanodiscs inhibit influenza virus infection and reduce morbidity and mortality in a mouse model. Our results suggest a new class of antivirals applicable to other enveloped viruses that cause irreversible physical damage specifically to virus envelope by viruses' own fusion machine. In conclusion, the lipid nanostructure provides another dimension for antiviral activity of decoy molecules.
膜破坏剂可以选择性地针对病毒与宿主膜,从而有可能抑制广谱包膜病毒,但目前缺乏此类抗病毒药物。在这里,我们开发了一种纳米盘,其中包含一种诱饵病毒受体,可抑制病毒感染。从机制上讲,携带病毒受体唾液酸的纳米盘与流感病毒颗粒结合,并被共同内吞到宿主细胞中。在内涵体中的低 pH 值下,纳米盘会破坏病毒包膜,将病毒 RNA 困在内体溶酶体中进行酶解。相比之下,由于缺乏膜破坏作用,含有诱饵受体的脂质体显示出较弱的抗病毒活性。纳米盘抑制流感病毒感染,并降低小鼠模型中的发病率和死亡率。我们的结果表明,有一种新的抗病毒药物类别适用于其他包膜病毒,这些病毒通过自身的融合机制对病毒包膜造成不可逆的物理损伤。总之,脂质纳米结构为诱饵分子的抗病毒活性提供了另一个维度。