Department of Medicine, University of Chicago, Chicago, Illinois 60637.
Genetics. 2014 Feb;196(2):539-55. doi: 10.1534/genetics.113.157602. Epub 2013 Nov 26.
Drosophila melanogaster has been widely used as a model of human Mendelian disease, but its value in modeling complex disease has received little attention. Fly models of complex disease would enable high-resolution mapping of disease-modifying loci and the identification of novel targets for therapeutic intervention. Here, we describe a fly model of permanent neonatal diabetes mellitus and explore the complexity of this model. The approach involves the transgenic expression of a misfolded mutant of human preproinsulin, hINS(C96Y), which is a cause of permanent neonatal diabetes. When expressed in fly imaginal discs, hINS(C96Y) causes a reduction of adult structures, including the eye, wing, and notum. Eye imaginal discs exhibit defects in both the structure and the arrangement of ommatidia. In the wing, expression of hINS(C96Y) leads to ectopic expression of veins and mechano-sensory organs, indicating disruption of wild-type signaling processes regulating cell fates. These readily measurable "disease" phenotypes are sensitive to temperature, gene dose, and sex. Mutant (but not wild-type) proinsulin expression in the eye imaginal disc induces IRE1-mediated XBP1 alternative splicing, a signal for endoplasmic reticulum stress response activation, and produces global change in gene expression. Mutant hINS transgene tester strains, when crossed to stocks from the Drosophila Genetic Reference Panel, produce F1 adults with a continuous range of disease phenotypes and large broad-sense heritability. Surprisingly, the severity of mutant hINS-induced disease in the eye is not correlated with that in the notum in these crosses, nor with eye reduction phenotypes caused by the expression of two dominant eye mutants acting in two different eye development pathways, Drop (Dr) or Lobe (L), when crossed into the same genetic backgrounds. The tissue specificity of genetic variability for mutant hINS-induced disease has, therefore, its own distinct signature. The genetic dominance of disease-specific phenotypic variability in our model of misfolded human proinsulin makes this approach amenable to genome-wide association study in a simple F1 screen of natural variation.
黑腹果蝇已被广泛用作人类孟德尔疾病的模型,但它在模拟复杂疾病方面的价值却很少受到关注。复杂疾病的果蝇模型将能够实现疾病修饰基因座的高分辨率图谱绘制,并鉴定出治疗干预的新靶点。在这里,我们描述了一种永久性新生儿糖尿病的果蝇模型,并探讨了该模型的复杂性。该方法涉及人前胰岛素突变体 hINS(C96Y)的转基因表达,该突变体是导致永久性新生儿糖尿病的原因之一。当在果蝇 imaginal discs 中表达时,hINS(C96Y)导致成年结构减少,包括眼睛、翅膀和背板。眼睛 imaginal discs 显示出小眼结构和排列的缺陷。在翅膀中,hINS(C96Y)的表达导致静脉和机械感觉器官的异位表达,表明调节细胞命运的野生型信号通路受到干扰。这些易于测量的“疾病”表型对温度、基因剂量和性别敏感。眼睛 imaginal disc 中突变(而非野生型)前胰岛素的表达诱导 IRE1 介导的 XBP1 选择性剪接,这是内质网应激反应激活的信号,并导致基因表达的全局变化。当与来自 Drosophila Genetic Reference Panel 的 stock 杂交时,突变 hINS 转基因测试品系产生具有连续疾病表型范围和大广义遗传力的 F1 成虫。令人惊讶的是,在这些杂交中,突变 hINS 诱导的疾病严重程度在眼睛和背板之间没有相关性,也与在相同遗传背景中表达两种作用于两个不同眼睛发育途径的显性眼睛突变体 Drop (Dr) 或 Lobe (L) 引起的眼睛减少表型没有相关性。因此,突变 hINS 诱导疾病的遗传变异性的组织特异性具有其自身独特的特征。我们的错误折叠人前胰岛素模型中疾病特异性表型变异性的遗传显性使这种方法适合在简单的 F1 自然变异筛选中进行全基因组关联研究。