Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637.
Genetics. 2014 Feb;196(2):557-67. doi: 10.1534/genetics.113.157800. Epub 2013 Nov 26.
The identification and validation of gene-gene interactions is a major challenge in human studies. Here, we explore an approach for studying epistasis in humans using a Drosophila melanogaster model of neonatal diabetes mellitus. Expression of the mutant preproinsulin (hINS(C96Y)) in the eye imaginal disc mimics the human disease: it activates conserved stress-response pathways and leads to cell death (reduction in eye area). Dominant-acting variants in wild-derived inbred lines from the Drosophila Genetics Reference Panel produce a continuous, highly heritable distribution of eye-degeneration phenotypes in a hINS(C96Y) background. A genome-wide association study (GWAS) in 154 sequenced lines identified a sharp peak on chromosome 3L, which mapped to a 400-bp linkage block within an intron of the gene sulfateless (sfl). RNAi knockdown of sfl enhanced the eye-degeneration phenotype in a mutant-hINS-dependent manner. RNAi against two additional genes in the heparan sulfate (HS) biosynthetic pathway (ttv and botv), in which sfl acts, also modified the eye phenotype in a hINS(C96Y)-dependent manner, strongly suggesting a novel link between HS-modified proteins and cellular responses to misfolded proteins. Finally, we evaluated allele-specific expression difference between the two major sfl-intronic haplotypes in heterozygtes. The results showed significant heterogeneity in marker-associated gene expression, thereby leaving the causal mutation(s) and its mechanism unidentified. In conclusion, the ability to create a model of human genetic disease, map a QTL by GWAS to a specific gene, and validate its contribution to disease with available genetic resources and the potential to experimentally link the variant to a molecular mechanism demonstrate the many advantages Drosophila holds in determining the genetic underpinnings of human disease.
基因-基因相互作用的鉴定和验证是人类研究中的一个主要挑战。在这里,我们探索了一种使用黑腹果蝇新生儿糖尿病模型研究人类中上位性的方法。突变前胰岛素原(hINS(C96Y))在眼睛图像盘中的表达模拟了人类疾病:它激活了保守的应激反应途径,并导致细胞死亡(眼睛区域减少)。来自果蝇遗传参考面板的野生衍生近交系中的显性作用变体在 hINS(C96Y)背景下产生了连续的、高度可遗传的眼睛退化表型分布。在 154 个测序系的全基因组关联研究(GWAS)中,在第 3L 染色体上发现了一个尖锐的峰,该峰映射到基因 sulfateless(sfl)内含子内的 400bp 连锁块。sfl 的 RNAi 敲低以依赖于突变型 hINS 的方式增强了眼睛退化表型。HS 生物合成途径(ttv 和 botv)中另外两个基因的 RNAi 也以依赖于 hINS(C96Y)的方式修饰了眼睛表型,强烈表明 HS 修饰蛋白与细胞对错误折叠蛋白的反应之间存在新的联系。最后,我们评估了杂合子中两个主要 sfl 内含子单倍型之间的等位基因特异性表达差异。结果显示标记相关基因表达存在显著异质性,从而使因果突变及其机制未被识别。总之,创建人类遗传疾病模型、通过 GWAS 将 QTL 映射到特定基因、并利用现有遗传资源验证其对疾病的贡献,以及通过实验将变体与分子机制联系起来的能力,展示了果蝇在确定人类疾病遗传基础方面的许多优势。